コード例 #1
0
ファイル: run_M1.py プロジェクト: robinhenry/meng
def run(dataset, sensor_class, which_i, coeff_type, k_nn, epochs, folder,
        T_train, freq):

    # Create the folder in which the experiment results will be stored.
    exp_logger = ExperimentLogger(folder, locals())

    # Load true load flow.
    V_org, I_org, P_org, Q_org, current_idx = load_true_data(dataset)
    T = V_org.shape[1]

    # Extract the list of which coefficients to estimate.
    which_i = utils.unpack_which_i(which_i, V_org.shape[0])

    # Select the noise std that corresponds to the type of coefficient(s).
    std_abs = constants.SENSOR_STD_ABS[sensor_class]
    std_arg = constants.SENSOR_STD_ANG[sensor_class]

    # Transform voltage phasor measurements into either
    # (|x|, Re{x}, or Im{x}) based on `coeff_type`.
    X_org_a, X_org_b = utils.dependent_vars_setup(V_org, coeff_type)

    # Remove slack bus measurements and create delta matrices.
    dPQ_org = np.vstack((np.diff(P_org[1:], axis=1),
                         np.diff(Q_org[1:], axis=1)))
    dX_org_a = np.diff(X_org_a[1:], axis=1)

    # Add noise to load flow data.
    V_meas, _, P_meas, Q_meas, _, _, _, _, _, _ = \
        simulate_noisy_meas(sensor_class, V_org, I_org, current_idx)

    # Transform voltage phasor measurements into either
    # (|x|, Re{x}, or Im{x}) based on `coeff_type`.
    X_meas_a, X_meas_b = utils.dependent_vars_setup(V_meas, coeff_type)

    # Remove slack bus measurements and create delta matrices.
    dPQ_meas = np.vstack((np.diff(P_meas[1:], axis=1),
                          np.diff(Q_meas[1:], axis=1)))
    dX_meas_a = np.diff(X_meas_a[1:], axis=1)

    # Load the true sensitivity coefficients of interest.
    coefficients = load_coefficients(dataset)
    S_a_true, S_b_true = utils.coefficients_setup(coefficients, coeff_type, which_i)
    del coefficients

    # Compute the true voltage magnitude deviations (from the load flow).
    dV_load_flow = np.diff(np.abs(V_org[1:]), axis=1)

    # T_plot = 200
    t_nn = np.arange(T_train + k_nn, T)  # which timesteps the NN estimates.
    t_plot = np.arange(T_train + k_nn, T, freq)   # which timesteps should be plotted.
    t_nn_plot = np.arange(0, T - T_train - k_nn, freq)  # the idx of the nn estimations that should be plotted

    X_train, X_test = dX_meas_a[:, :T_train], dX_meas_a[:, T_train:]
    PQ_train, PQ_test = dPQ_meas[:, :T_train], dPQ_meas[:, T_train:]

    fig_1, axs_1 = plt.subplots(len(which_i), 1, sharex=True, figsize=(10, 2.5*len(which_i)))
    fig_2, axs_2 = plt.subplots(len(which_i), 1, sharex=True, figsize=(10, 2.5*len(which_i)))

    for idx, x_i in enumerate(which_i):

        training_dataset = build_training_dataloader(X_train, PQ_train, x_i, k_nn)
        in_shape = (dX_meas_a.shape[0] + dPQ_meas.shape[0]) * k_nn
        hidden_shapes = [128, 128]
        sc_matrix_shape = (dPQ_meas.shape[0])

        model = FeedForward(in_shape, hidden_shapes, sc_matrix_shape, k_nn)
        train_loss = nn.train(model, training_dataset, lr=1e-3, epochs=epochs, l2=0.)

        # Use the neural net to estimate the coefficients for the last 12 hours.
        testing_dataset = build_testing_dataloader(X_test, PQ_test, x_i, k_nn)
        S_a_nn, dV_nn, dV_nn_true = model.predict(testing_dataset)

        # Plot estimated coefficient.
        ax = axs_1[idx]
        ax.plot(t_plot, S_a_true[x_i][x_i - 1][t_plot], label='True')
        ax.plot(t_plot, S_a_nn[x_i - 1][t_nn_plot], label='Neural net')
        ax.legend(loc='upper right')

        # Plot predicted d|X|.
        ax = axs_2[idx]
        ax.plot(t_plot, dV_load_flow[x_i-1][t_plot], label='True')
        ax.plot(t_plot, dV_nn[t_nn_plot], label='Neural net')
        ax.legend(loc='upper right')

    exp_logger.save_figure(fig_1, 'coefficients')
    exp_logger.save_figure(fig_2, 'dV')

    plt.show()

    print('Done!')
コード例 #2
0
ファイル: train.py プロジェクト: robinhenry/meng
                for idx in range(6):

                    nn_run += 1
                    print(f'\nnn run {nn_run}/{nn_runs}...')
                    start_time = time.time()

                    # Extract the correct parameters for this type of neural net.
                    in_shape = in_shapes[idx]
                    out_shape = out_shapes[idx]
                    X_tr = X_matrices_tr[idx]
                    PQ_tr = PQ_matrices_tr[idx]
                    X_val = X_matrices_val[idx]
                    PQ_val = PQ_matrices_val[idx]

                    # Build training and validation sets.
                    train_data = build_training_dataloader(X_tr, PQ_tr, x_i, k_nn)
                    val_data = build_training_dataloader(X_val, PQ_val, x_i, k_nn)

                    # Initialize and train the neural net.
                    model = FeedForward(in_shape, h_shapes, out_shape, k_nn)
                    model, val_loss = nn_utils.train(model, train_data, val_data, lr=1e-3, epochs=nn_epoch_max, l2=0.)

                    # Keep the model if it's the best seen so far.
                    if best_val_loss[idx] is None or val_loss < best_val_loss[idx]:
                        best_val_loss[idx] = val_loss
                        best_models[idx] = model

                    print(f' time: {(time.time() - start_time) / 60:.2} min.')

        # Save the 6 neural nets.
        for idx, model in enumerate(best_models):
コード例 #3
0
ファイル: search_M1.py プロジェクト: robinhenry/meng
        sc_matrix_shape = 2 * N
        model_dv_magn = FeedForward(in_shape, hidden_shapes, sc_matrix_shape, k_nn)
        model_dv_re = FeedForward(in_shape, hidden_shapes, sc_matrix_shape, k_nn)
        model_dv_im = FeedForward(in_shape, hidden_shapes, sc_matrix_shape, k_nn)

        in_shape = (3 * N + 1) * k_nn
        sc_matrix_shape = 2 * N + 1
        model_v_magn = FeedForward(in_shape, hidden_shapes, sc_matrix_shape, k_nn)
        model_v_re = FeedForward(in_shape, hidden_shapes, sc_matrix_shape, k_nn)
        model_v_im = FeedForward(in_shape, hidden_shapes, sc_matrix_shape, k_nn)

        models = [model_dv_magn, model_dv_re, model_dv_im,
                  model_v_magn, model_v_re, model_v_im]

        # Define training data sets.
        train_dv_magn = build_training_dataloader(dV_meas_magn_tr, dPQ_meas_tr, x_i, k_nn)
        train_dv_re = build_training_dataloader(dV_meas_re_tr, dPQ_meas_tr, x_i, k_nn)
        train_dv_im = build_training_dataloader(dV_meas_im_tr, dPQ_meas_tr, x_i, k_nn)

        train_v_magn = build_training_dataloader(V_meas_magn_tr, PQ_meas_bias_tr, x_i, k_nn)
        train_v_re = build_training_dataloader(V_meas_re_tr, PQ_meas_bias_tr, x_i, k_nn)
        train_v_im = build_training_dataloader(V_meas_im_tr, PQ_meas_bias_tr, x_i, k_nn)

        train_datasets = [train_dv_magn, train_dv_re, train_dv_im,
                          train_v_magn, train_v_re, train_v_im]

        # Define validation data sets.
        val_dv_magn = build_testing_dataloader(dV_meas_magn_val, dPQ_meas_val, x_i, k_nn)
        val_dv_re = build_testing_dataloader(dV_meas_re_val, dPQ_meas_val, x_i, k_nn)
        val_dv_im = build_testing_dataloader(dV_meas_im_val, dPQ_meas_val, x_i, k_nn)
コード例 #4
0
# Create measurement delta matrices used in Model 1.
dV_meas_magn = np.diff(V_meas_magn, axis=1)
dPQ_meas = np.diff(PQ_meas, axis=1)

# Split training and testing data.
dV_train, dPQ_train = dV_meas_magn[:, :T_train], dPQ_meas[:, :T_train]
dV_test, dPQ_test = dV_meas_magn[:, T_train:], dPQ_meas[:, T_train:]
T_test = T - T_train

V_train, PQ_train = V_meas_magn[:, :T_train], PQ_meas_bias[:, :T_train]
V_test, PQ_test = V_meas_magn[:, T_train:], PQ_meas_bias[:, T_train:]

####################### TRAIN NEURAL NETWORKS #######################

# Define training and testing data sets.
train_dv = build_training_dataloader(dV_train, dPQ_train, x_i, k_nn)
test_dv = build_testing_dataloader(dV_test, dPQ_test, x_i, k_nn)

train_v = build_training_dataloader(V_train, PQ_train, x_i, k_nn)
test_v = build_testing_dataloader(V_test, PQ_test, x_i, k_nn)

# models_dv = []
models_v = []

for iter in range(N_nets):
    print(f'\nTraining model {iter}...')

    # # Initialize neural nets.
    # in_shape = 3 * N * k_nn
    # sc_matrix_shape = 2 * N
    # model_dv = FeedForward(in_shape, hidden_shapes, sc_matrix_shape, k_nn)