コード例 #1
0
def batch_inputs(paths,
                 reference_shape,
                 batch_size=32,
                 is_training=False,
                 num_landmarks=68,
                 mirror_image=False):
    """Reads the files off the disk and produces batches.

    Args:
      paths: a list of directories that contain training images and
        the corresponding landmark files.
      reference_shape: a numpy array [num_landmarks, 2]
      batch_size: the batch size.
      is_traininig: whether in training mode.
      num_landmarks: the number of landmarks in the training images.
      mirror_image: mirrors the image and landmarks horizontally.
    Returns:
      images: a tf tensor of shape [batch_size, width, height, 3].
      lms: a tf tensor of shape [batch_size, 68, 2].
      lms_init: a tf tensor of shape [batch_size, 68, 2].
    """

    files = tf.concat([
        list(map(str, sorted(Path(d).parent.glob(Path(d).name))))
        for d in paths
    ], 0)

    filename_queue = tf.train.string_input_producer(files,
                                                    shuffle=is_training,
                                                    capacity=1000)

    filename = filename_queue.dequeue()

    image, lms, lms_init = tf.py_func(
        partial(load_image, is_training=is_training,
                mirror_image=mirror_image),
        [filename, reference_shape],  # input arguments
        [tf.float32, tf.float32, tf.float32],  # output types
        name='load_image')

    # The image has always 3 channels.
    image.set_shape([None, None, 3])

    if is_training:
        image = distort_color(image)

    lms = tf.reshape(lms, [num_landmarks, 2])
    lms_init = tf.reshape(lms_init, [num_landmarks, 2])

    images, lms, inits, shapes = tf.train.batch(
        [image, lms, lms_init, tf.shape(image)],
        batch_size=batch_size,
        num_threads=4 if is_training else 1,
        capacity=1000,
        enqueue_many=False,
        dynamic_pad=True)

    return images, lms, inits, shapes
コード例 #2
0
ファイル: data_provider.py プロジェクト: trigeorgis/mdm
def batch_inputs(paths,
                 reference_shape,
                 batch_size=32,
                 is_training=False,
                 num_landmarks=68,
                 mirror_image=False):
    """Reads the files off the disk and produces batches.

    Args:
      paths: a list of directories that contain training images and
        the corresponding landmark files.
      reference_shape: a numpy array [num_landmarks, 2]
      batch_size: the batch size.
      is_traininig: whether in training mode.
      num_landmarks: the number of landmarks in the training images.
      mirror_image: mirrors the image and landmarks horizontally.
    Returns:
      images: a tf tensor of shape [batch_size, width, height, 3].
      lms: a tf tensor of shape [batch_size, 68, 2].
      lms_init: a tf tensor of shape [batch_size, 68, 2].
    """

    files = tf.concat(0, [map(str, sorted(Path(d).parent.glob(Path(d).name)))
                          for d in paths])

    filename_queue = tf.train.string_input_producer(files,
                                                    shuffle=is_training,
                                                    capacity=1000)

    filename = filename_queue.dequeue()

    image, lms, lms_init = tf.py_func(
        partial(load_image, is_training=is_training,
                mirror_image=mirror_image),
        [filename, reference_shape], # input arguments
        [tf.float32, tf.float32, tf.float32], # output types
        name='load_image'
    )

    # The image has always 3 channels.
    image.set_shape([None, None, 3])

    if is_training:
        image = distort_color(image)

    lms = tf.reshape(lms, [num_landmarks, 2])
    lms_init = tf.reshape(lms_init, [num_landmarks, 2])

    images, lms, inits, shapes = tf.train.batch(
                                    [image, lms, lms_init, tf.shape(image)],
                                    batch_size=batch_size,
                                    num_threads=4 if is_training else 1,
                                    capacity=1000,
                                    enqueue_many=False,
                                    dynamic_pad=True)

    return images, lms, inits, shapes