コード例 #1
0
    def __init__(self,
                 num_agents=7,
                 num_nodes=10,
                 num_steps=1000,
                 server=True):
        self.server = server
        self.num_steps = num_steps
        self.num_agents = num_agents
        self.num_nodes = num_nodes if num_nodes >= self.num_agents else self.num_agents
        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=0.5)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(
            model_reporters={"Gini": compute_gini},
            agent_reporters={"Wealth": lambda _: _.wealth})

        list_of_random_nodes = self.random.sample(self.G.nodes(),
                                                  self.num_agents)

        # Create agents
        for i in range(self.num_agents):
            a = MoneyAgent(i, self)
            self.schedule.add(a)
            # Add the agent to a random node
            self.grid.place_agent(a, list_of_random_nodes[i])

        self.running = True
        self.datacollector.collect(self)
コード例 #2
0
 def __init__(self, **params):
     super().__init__()
     config = configparser.ConfigParser()
     config.read('conf/config.ini')
     self.sqlite_db = config['SQLITEDB']['file']
     self.height = 20
     self.width = 20
     self.is_init_db = False if params.get(
         'write_db') is None else params.get('write_db')
     self.is_write_db = False if params.get(
         'write_db') is None else params.get('write_db')
     self.max_steps = params['max_steps']
     self.initial_saver = params['initial_saver']
     self.initial_loan = params['initial_loan']
     self.initial_bank = params['initial_bank']
     self.rfree = params['rfree']
     self.reserve_rates = params[
         'rfree'] / 2.0  # set reserve rates one half of risk free rate
     self.libor_rate = params['rfree']
     self.bankrupt_liquidation = 1  # 1: it is fire sale of assets, 0: bank liquidates loans at face value
     self.car = params['car']
     self.min_reserves_ratio = params['min_reserves_ratio']
     self.initial_equity = params['initial_equity']
     self.G = nx.empty_graph(self.initial_bank)
     self.grid = NetworkGrid(self.G)
     self.schedule = RandomActivation(self)
     self.datacollector = DataCollector({"BankAsset": get_sum_totasset})
コード例 #3
0
ファイル: model.py プロジェクト: LordMaciek/epi_net
    def __init__(self, size, net_type):
        self.num_agents = size
        self.num_nodes = self.num_agents
        self.type = net_type
        if self.type == 1:
            self.G, self.avg_degree, self.big_nodes, self.connectivity, self.clustering = netgen_ba(
                100, 4)
        if self.type == 2:
            self.G, self.avg_degree, self.big_nodes, self.connectivity, self.clustering = netgen_er(
                100, .078)
        if self.type == 3:
            self.G, self.avg_degree, self.big_nodes, self.connectivity, self.clustering = netgen_rr(
                100, 4)
        self.grid = NetworkGrid(self.G)
        self.schedule = SimultaneousActivation(self)
        self.running = True
        self.step_counter = 1
        for i, node in enumerate(self.G.nodes()):
            a = NormAgent(i, self)
            self.schedule.add(a)
            self.grid.place_agent(a, node)

        self.datacollector = DataCollector(
            model_reporters={
                "PerHate": percent_haters,
                "AverageSens": average_sensitivity,
            },
            agent_reporters={"Hate": "behavior"})
コード例 #4
0
class COVID_model(Model):
    def __init__(self):
        super().__init__(Model)

        self.susceptible = 0
        self.dead = 0
        self.recovered = 0
        self.infected = 0
        interactions = model_params.parameters['interactions']
        self.population = model_params.parameters['population']
        self.SIR_instance = SIR.Infection(
            self,
            ptrans=model_params.parameters['ptrans'],
            reinfection_rate=model_params.parameters['reinfection_rate'],
            I0=model_params.parameters["I0"],
            severe=model_params.parameters["severe"],
            progression_period=model_params.parameters["progression_period"],
            progression_sd=model_params.parameters["progression_sd"],
            death_rate=model_params.parameters["death_rate"],
            recovery_days=model_params.parameters["recovery_days"],
            recovery_sd=model_params.parameters["recovery_sd"])

        G = SIR.build_network(interactions, self.population)
        self.grid = NetworkGrid(G)
        self.schedule = RandomActivation(self)
        self.dead_agents = []
        self.running = True

        for node in range(self.population):
            new_agent = agent.human(node, self)  #what was self.next_id()
            self.grid.place_agent(new_agent, node)
            self.schedule.add(new_agent)

        #self.meme = 0
        self.datacollector = DataCollector(
            model_reporters={
                "infected": lambda m: c_p.compute(m, 'infected'),
                "recovered": lambda m: c_p.compute(m, 'recovered'),
                "susceptible": lambda m: c_p.compute(m, "susceptible"),
                "dead": lambda m: c_p.compute(m, "dead"),
                "R0": lambda m: c_p.compute(m, "R0"),
                "severe_cases": lambda m: c_p.compute(m, "severe")
            })
        self.datacollector.collect(self)

    def step(self):
        self.schedule.step()

        self.datacollector.collect(self)
        '''
        for a in self.schedule.agents:
            if a.alive == False:
                self.schedule.remove(a)
                self.dead_agents.append(a.unique_id)
        '''

        if self.dead == self.schedule.get_agent_count():
            self.running = False
        else:
            self.running = True
コード例 #5
0
    def __init__(self, N, limit_time, infected_init, neighbors):
        self.num_agents = N
        prob = neighbors / self.num_agents
        self.G = nx.erdos_renyi_graph(n=self.num_agents, p=prob)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)

        self.datacollector = DataCollector(
            {
                "Infected": number_infected,
                "Susceptible": number_susceptible,
                "Resistant": number_resistant,
            }
        )

        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = PeopleAgent(i,limit_time, self)
            self.schedule.add(a)
            # Add the agent to the node
            self.grid.place_agent(a, node)

        # Infect some nodes
        infected_nodes = self.random.sample(self.G.nodes(), infected_init)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.status = State.ACTIVE
        
        self.datacollector.collect(self)
コード例 #6
0
ファイル: model.py プロジェクト: bangtree/mesa
class BoltzmannWealthModelNetwork(Model):
    """A model with some number of agents."""

    def __init__(self, num_agents=7, num_nodes=10):

        self.num_agents = num_agents
        self.num_nodes = num_nodes if num_nodes >= self.num_agents else self.num_agents
        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=0.5)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(
            model_reporters={"Gini": compute_gini},
            agent_reporters={"Wealth": lambda _: _.wealth}
        )

        list_of_random_nodes = self.random.sample(self.G.nodes(), self.num_agents)

        # Create agents
        for i in range(self.num_agents):
            a = MoneyAgent(i, self)
            self.schedule.add(a)
            # Add the agent to a random node
            self.grid.place_agent(a, list_of_random_nodes[i])

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self, n):
        for i in range(n):
            self.step()
コード例 #7
0
ファイル: model.py プロジェクト: yjx4131/mesa
    def __init__(self, num_nodes, avg_node_degree, initial_outbreak_size, virus_spread_chance, virus_check_frequency,
                 recovery_chance, gain_resistance_chance):

        self.num_nodes = num_nodes
        prob = avg_node_degree / self.num_nodes
        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
        self.virus_spread_chance = virus_spread_chance
        self.virus_check_frequency = virus_check_frequency
        self.recovery_chance = recovery_chance
        self.gain_resistance_chance = gain_resistance_chance
        self.running = True

        self.datacollector = DataCollector({"Infected": number_infected,
                                            "Susceptible": number_susceptible,
                                            "Resistant": number_resistant})

        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = VirusAgent(i, self, State.SUSCEPTIBLE, self.virus_spread_chance, self.virus_check_frequency,
                           self.recovery_chance, self.gain_resistance_chance)
            self.schedule.add(a)
            # Add the agent to the node
            self.grid.place_agent(a, node)

        # Infect some nodes
        infected_nodes = random.sample(self.G.nodes(), self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.state = State.INFECTED
コード例 #8
0
    def __init__(self, N, initInfected, percInfect, percRecover, intervention):
        self.running = True
        self.num_agents = N
        self.initInfected = initInfected
        self.percInfect = percInfect
        self.percRecover = percRecover
        self.intervention = intervention

        #self.grid = nx.ErdosRenyiGraph(self.num_agents,)
        self.G = nx.complete_graph(self.num_agents)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomSingleActivation(self)

        # create and initialise agents
        for i, node in enumerate(self.G.nodes):
            a = DiseaseAgent(i, self)
            self.schedule.add(a)
            self.grid.place_agent(a, node)
        # make some agents initially infected
        for a in filter(
                lambda a: a.unique_id in initInfected, self.schedule.agents
        ):  #random.sample(self.schedule.agents, self.initInfected):
            a.infect()

        # set up data collection
        self.datacollector = DataCollector(agent_reporters={
            "State": "state",
            "Event": "event",
            "Cause": "cause"
        })
コード例 #9
0
ファイル: model.py プロジェクト: DataScience-MD/ABM
    def __init__(self):
        super().__init__(Model)
        print("Starting Model")
        density = model_params.parameters['density']
        nodes = model_params.parameters['network_size']
        neg_bias = model_params.parameters['neg_bias']
        meme_density = model_params.parameters['meme_density']
        self.num_agents = nodes
        self.meme = 0

        #G = model_functions.build_network(density, nodes)
        #nx.write_gpickle(G, "population.gpickle")
        #END
        G = nx.read_gpickle("population.gpickle")
        self.grid = NetworkGrid(G)
        self.schedule = RandomActivation(self)
        print("Network Created")

        self.running = True

        for node in range(nodes):
            new_agent = agent.tweeter(self.next_id(), node, self, neg_bias,
                                      meme_density)
            self.grid.place_agent(new_agent, node)
            self.schedule.add(new_agent)

        #self.meme = 0
        self.datacollector = DataCollector(
            model_reporters={
                "meme_density": model_functions.compute_meme_density
            })
        self.datacollector.collect(self)
コード例 #10
0
 def __init__(self):
     super().__init__(Model)
     
     self.susceptible = 0
     self.dead = 0
     self.recovered = 0
     self.infected = 0
     interactions = model_params.parameters['interactions']
     population = model_params.parameters['population']
     
     self.num_agents = population
     
     G = model_functions.build_network(interactions, population)
     self.grid = NetworkGrid(G)
     self.schedule = RandomActivation(self)
     
     self.running = True
 
     for node in range(population):
         new_agent = agent.human(self.next_id(), node, self)
         self.grid.place_agent(new_agent, node)
         self.schedule.add(new_agent)
 
     #self.meme = 0
     self.datacollector = DataCollector(model_reporters={"infected": model_functions.compute_infected, 
                                                         "recovered": model_functions.compute_recovered, 
                                                         "susceptible": model_functions.compute_susceptible, 
                                                         "dead": model_functions.compute_dead, 
                                                         "R0": model_functions.compute_R0, 
                                                         "severe_cases":model_functions.compute_severe})
     self.datacollector.collect(self)
コード例 #11
0
    def __init__(self, size, set_no):
        self.num_agents = size
        self.num_nodes = self.num_agents
        self.set = set_no
        self.I = networks_for_use[self.set][0]
        self.net_deg = networks_for_use[self.set][
            1]  # 1st parameter - average node degree
        self.big_nodes = networks_for_use[self.set][
            2]  # 2nd parameter - huge networks allowed?
        self.culling = networks_for_use[self.set][
            3]  # 3rd parameter - maximum node degree allowed. only use if
        # big_nodes = True!
        self.grid = NetworkGrid(self.I)
        self.schedule = SimultaneousActivation(self)
        self.running = True

        for i, node in enumerate(self.I.nodes()):
            a = NormAgent(i, self)
            self.schedule.add(a)
            self.grid.place_agent(a, node)

        self.datacollector = DataCollector(
            model_reporters={
                "PerHate": percent_haters,
                "AveKnowing": percent_hate_knowing,
                "AveHate": average_hate,
                "MeanDeg": net_avg_deg,
                "Culling": net_culling,
                "MaxDeg": max_deg,
            },
            agent_reporters={"Hate": "behavior"})
コード例 #12
0
 def __init__(   self, num_counties, preferences, network_type, \
                 climate_threshold, limited_radius=True, init_time=0):
     super().__init__()
     global TICK
     TICK = init_time
     self.num_agents = 0
     self.agent_index = 0
     self.preferences = preferences
     self.limited_radius = limited_radius
     self.upper_network_size = 3
     self.network_type = network_type
     self.climate_threshold = climate_threshold
     self.schedule = SimultaneousActivation(self)
     self.G = create_graph()
     self.num_counties = num_counties
     self.nodes = self.G.nodes()
     self.grid = NetworkGrid(self.G)
     self.county_climate_ranking = []
     self.county_population_list = [0] * self.num_counties
     self.county_flux = [0] * self.num_counties
     self.deaths = []
     self.births = []
     self.county_income = {}
     self.datacollector = DataCollector(model_reporters={"County Population": lambda m1: list(m1.county_population_list),
                                                         "County Influx": lambda m2: list(m2.county_flux),
                                                         "Deaths": lambda m3: m3.deaths,
                                                         "Births": lambda m4: m4.births,
                                                         "Total Population": lambda m5: m5.num_agents})
コード例 #13
0
class propagation_model(Model):
    
    def __init__(self):
        super().__init__(Model)
        
        density = model_params.parameters['density']
        nodes = model_params.parameters['network_size']
        neg_bias = model_params.parameters['neg_bias']
        meme_density = model_params.parameters['meme_density']
        self.num_agents = nodes
        self.meme = 0
        
        G = model_functions.build_network(density, nodes)
        self.grid = NetworkGrid(G)
        self.schedule = RandomActivation(self)
        
        self.running = True
    
        for node in range(nodes):
            new_agent = agent.tweeter(self.next_id(), node, self, neg_bias, meme_density)
            self.grid.place_agent(new_agent, node)
            self.schedule.add(new_agent)
    
        #self.meme = 0
        self.datacollector = DataCollector(model_reporters={"meme_density": model_functions.compute_meme_density})
        self.datacollector.collect(self)
    
    def step(self):
        self.schedule.step()
        
        self.datacollector.collect(self)
        
        if self.meme == self.schedule.get_agent_count():
            self.running = False
コード例 #14
0
    def __init__(self,
                 num_nodes=1000,
                 avg_node_degree=3,
                 initial_outbreak_size=10,
                 race="black"):
        self.num_nodes = num_nodes
        self.race = race
        self.months = 0
        prob = avg_node_degree / self.num_nodes

        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
        self.sentence = generate_sentence(race)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes

        self.datacollector = DataCollector({
            "Incarcerated": number_incarcerated,
            "Susceptible": number_susceptible,
            "Released": number_released
        })

        for i, node in enumerate(self.G.nodes()):
            a = Person(i, self, State.SUSCEPTIBLE, self.sentence)
            self.schedule.add(a)
            self.grid.place_agent(a, node)

        # Begin with some portion of the population in prison
        infected_nodes = self.random.sample(self.G.nodes(),
                                            self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.state = State.INCARCERATED

        self.running = True
        self.datacollector.collect(self)
コード例 #15
0
ファイル: model.py プロジェクト: o-date/abm
class BoltzmannWealthModelNetwork(Model):
    """A model with some number of agents."""

    def __init__(self, num_agents=7, num_nodes=10):

        self.num_agents = num_agents
        self.num_nodes = num_nodes if num_nodes >= self.num_agents else self.num_agents
        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=0.5)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.datacollector = DataCollector(
            model_reporters={"Gini": compute_gini},
            agent_reporters={"Wealth": lambda _: _.wealth}
        )

        list_of_random_nodes = random.sample(self.G.nodes(), self.num_agents)

        # Create agents
        for i in range(self.num_agents):
            a = MoneyAgent(i, self)
            self.schedule.add(a)
            # Add the agent to a random node
            self.grid.place_agent(a, list_of_random_nodes[i])

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self, n):
        for i in range(n):
            self.step()
コード例 #16
0
    def __init__(self, N, avg_node_degree, rule='CMR', zero_prob=0.5):
        self.num_agents = N
        self.rule = rule
        self.schedule = RandomActivation(self)
        prob = avg_node_degree / self.num_agents
        self.G = nx.erdos_renyi_graph(n=self.num_agents, p=prob)
        self.grid = NetworkGrid(self.G)

        #create the agents
        for i, node in enumerate(self.G.nodes()):
            a = OpinionAgent(
                i,
                self,
                initial_opinion=self.random.choices(
                    [0, 1], weights=[zero_prob, 1 - zero_prob],
                    k=1)[0])  #we can seed w/a non-equal probability
            self.schedule.add(a)
            self.grid.place_agent(a, node)

        self.datacollector = DataCollector(model_reporters={
            'opinion_0': opinion_0_ct,
            'opinion_1': opinion_1_ct
        })

        self.running = True  #we could check to see if we've reached a steady state
        self.datacollector.collect(self)
コード例 #17
0
    def __init__(self, population_size, initial_outbreak_size, spread_chance):
        print("Beginning model setup...\n")
        self.population_size = population_size
        print("Creating graph...")
        self.graph = nx.powerlaw_cluster_graph(population_size, 100, 0.5)
        #self.graph = nx.complete_graph(population_size)
        print(len(self.graph.edges))
        print("Initializing grid...")
        self.grid = NetworkGrid(self.graph)
        self.schedule = SimultaneousActivation(self)
        self.initial_outbreak_size = initial_outbreak_size
        self.spread_chance = spread_chance

        print("Initializing data collector...")
        self.datacollector = DataCollector({
            "Infected:": count_infected,
            "Susceptible:": count_susceptible,
            "Removed:": count_removed
        })

        for i, node in enumerate(self.graph.nodes()):
            a = Person(i, self, State.SUSCEPTIBLE, spread_chance)
            self.schedule.add(a)
            self.grid.place_agent(a, i)
            if i % 100 == 0:
                print("Finished with agent ", i)

        infected_nodes = self.random.sample(self.graph.nodes(),
                                            self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.status = State.INFECTED

        self.datacollector.collect(self)
        print("Model initialized...\n")
コード例 #18
0
    def __init__(self, graph, model_parameters):

        # Model initialization
        self.population_size = model_parameters['population_size']
        self.initial_outbreak_size = model_parameters['initial_outbreak_size']
        self.graph = graph
        self.grid = NetworkGrid(self.graph)
        self.schedule = SimultaneousActivation(self)

        self.datacollector = DataCollector({
            "Exposed": count_exposed,
            "Susceptible": count_susceptible,
            "Removed": count_removed,
            "Asymptomatic": count_asymptomatic,
            "Symptomatic": count_symptomatic
        })
        self.model_parameters = model_parameters

        for i, node in enumerate(self.graph.nodes()):
            a = Person(i, self, State.SUSCEPTIBLE, model_parameters)
            self.schedule.add(a)
            self.grid.place_agent(a, i)
            if i % 100 == 0:
                logger.info("Finished with agent " + str(i))

        infected_nodes = self.random.sample(self.graph.nodes(),
                                            self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.status = State.EXPOSED

        self.datacollector.collect(self)
        print("Model initialized...\n", str(self.model_parameters))
コード例 #19
0
class NormModel(Model):
    def __init__(self, size):
        self.num_agents = size
        self.num_nodes = self.num_agents
        # self.G = the_network[0]
        self.G = another_network
        self.grid = NetworkGrid(self.G)
        self.schedule = SimultaneousActivation(self)
        self.running = True

        for i, node in enumerate(self.G.nodes()):
            a = NormAgent(i, self)
            self.schedule.add(a)
            self.grid.place_agent(a, node)

        self.datacollector = DataCollector(
            model_reporters={
                "PerHate": percent_haters,
                "AverageSens": average_sensitivity,
            },
            agent_reporters={"Hate": "behavior"})

    def step(self):
        self.datacollector.collect(self)
        self.schedule.step()
        if percent_haters(
                self
        ) > 0.8:  # When the percentage of haters in the model exceeds 80,
            self.running = False  # the simulation is stopped, data collected, and next one is started.
コード例 #20
0
    def __init__(self, num_nodes=10, avg_node_degree=3, rewire_prob=.1, initial_outbreak_size=1, threshold_fake = 2, threshold_real = -2):
        self.num_nodes = num_nodes
        self.G = nx.watts_strogatz_graph(n=self.num_nodes, k= avg_node_degree, p=rewire_prob)   #G generate graph structure
        self.grid = NetworkGrid(self.G) #grid is the Masa native defintion of space: a coorindate with specified topology on which agents sits and interact
        self.schedule = SimultaneousActivation(self)
        self.initial_outbreak_size = (
            initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
        )

        self.datacollector = DataCollector(
            {
                "Infected_fake": number_infected_fake,
                "Infected_real": number_infected_real,
            }
        )

        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = User(
                i,
                self,
                0,  #make the state a int
                threshold_fake,
                threshold_real
            )
            self.schedule.add(a)
            # Add the agent to the node
            self.grid.place_agent(a, node)

        # Infect some nodes, initial infection bug free
        infected_nodes_fake = self.random.sample(self.G.nodes(), self.initial_outbreak_size)
        infected_nodes_real = self.random.sample(self.G.nodes(), self.initial_outbreak_size) 

        for a in self.grid.get_cell_list_contents(infected_nodes_fake):
            a.state = 1
            neighbors_nodes = self.grid.get_neighbors(a.pos)
            for n in self.grid.get_cell_list_contents(neighbors_nodes):
                n.state = 1
                
        for a in self.grid.get_cell_list_contents(infected_nodes_real):
            a.state = -1
            neighbors_nodes = self.grid.get_neighbors(a.pos)
            for n in self.grid.get_cell_list_contents(neighbors_nodes):
                n.state = -1  
                
        """
        state measures fake score!! the more negative the less likely to spread fake news
        also this model assumes that 
        1
        one piece of real news can cancel out one piece of fake news
        This model can be modulated by changing the value of fake and real
        
        2
        the inital braeakout size of fake and real news are the same
        This can be chaged by introducing a different initial breaksize for real and fake news
        however this score is kepet the same intentionally because too uch complexity is not good for modeling
        """        

        self.running = True
        self.datacollector.collect(self)
コード例 #21
0
ファイル: model.py プロジェクト: eescriba/smart-cities-drl
class WasteNet(Model):
    """Waste collection network model"""
    def __init__(self, mode, nb_nodes=10, nb_episodes=1):

        # Network
        self.G = generate_graph(nb_nodes)
        self.grid = NetworkGrid(self.G)

        # Gym Environment
        env_config = dict(graph=self.G)
        self.env = WasteNetEnv(env_config)

        # RL Agent
        if mode == WasteNetMode.PPO.name:
            rl_agent = PPOAgent("WasteNet", WasteNetEnv, env_config,
                                best_config)
            rl_agent.load("./checkpoints/checkpoint-best")
        else:
            rl_agent = None

        # Scheduler
        self.schedule = WasteNetActivation(self, mode, rl_agent)

        # Data Collector
        self.datacollector = DataCollector(
            model_reporters={
                "Empty": nb_empty,
                "Medium": nb_medium,
                "Full": nb_full,
                "Overflow": nb_overflow,
            },
            agent_reporters={
                "Fill level (%)": fill_level,
                "": lambda a: 100
            },
        )

        # Mesa Agents
        for i, node in enumerate(self.G.nodes()):
            if i in (0, self.G.number_of_nodes() - 1):
                a = BaseAgent(i, self)
            else:
                a = DumpsterAgent(i, self, self.env.fill_levels[i - 1])
            self.schedule.add(a)
            self.grid.place_agent(a, node)

        self.remaining_episodes = nb_episodes
        self.running = True
        self.datacollector.collect(self)

    def step(self):
        done = self.schedule.step()
        self.datacollector.collect(self)
        if done:
            self.env.reset()
            self.remaining_episodes -= 1
        if self.remaining_episodes == 0:
            self.running = False
コード例 #22
0
class VirusModel(Model):
    """A virus model with some number of agents"""
    def __init__(self, num_nodes, avg_node_degree, initial_outbreak_size,
                 virus_spread_chance, virus_check_frequency, recovery_chance,
                 gain_resistance_chance):

        self.num_nodes = num_nodes
        prob = avg_node_degree / self.num_nodes
        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
        self.virus_spread_chance = virus_spread_chance
        self.virus_check_frequency = virus_check_frequency
        self.recovery_chance = recovery_chance
        self.gain_resistance_chance = gain_resistance_chance

        self.datacollector = DataCollector({
            "Infected": number_infected,
            "Susceptible": number_susceptible,
            "Resistant": number_resistant
        })

        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = VirusAgent(i, self, State.SUSCEPTIBLE,
                           self.virus_spread_chance,
                           self.virus_check_frequency, self.recovery_chance,
                           self.gain_resistance_chance)
            self.schedule.add(a)
            # Add the agent to the node
            self.grid.place_agent(a, node)

        # Infect some nodes
        infected_nodes = random.sample(self.G.nodes(),
                                       self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.state = State.INFECTED

        self.running = True
        self.datacollector.collect(self)

    def resistant_susceptible_ratio(self):
        try:
            return number_state(self, State.RESISTANT) / number_state(
                self, State.SUSCEPTIBLE)
        except ZeroDivisionError:
            return math.inf

    def step(self):
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self, n):
        for i in range(n):
            self.step()
コード例 #23
0
ファイル: model.py プロジェクト: joekroese/math-of-revolution
class VirusModel(Model):
    """A virus model with some number of agents"""
    def __init__(self, num_nodes, avg_node_degree, initial_outbreak_size,
                 alpha, beta, gamma, k, n):

        self.num_nodes = num_nodes
        self.avg_node_degree = avg_node_degree
        self.G = nx.barabasi_albert_graph(n=self.num_nodes, m=avg_node_degree)
        # _graph(n=self.num_nodes, p=prob)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
        self.alpha = alpha
        self.beta = beta
        self.gamma = gamma

        self.k = k
        self.n = n

        self.datacollector = DataCollector({
            "Infected": number_active,
            "Susceptible": number_susceptible,
            "Carrier": number_inactive,
            "Removed": number_removed
        })
        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = VirusAgent(i, self, State.SUSCEPTIBLE, self.alpha, self.beta,
                           self.gamma, self.k, self.n)
            self.schedule.add(a)
            # Add the agent to the node
            self.grid.place_agent(a, node)

        # Infect some nodes
        active_nodes = random.sample(self.G.nodes(),
                                     self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(active_nodes):
            a.state = State.ACTIVE

        self.running = True
        self.datacollector.collect(self)

    def removed_susceptible_ratio(self):
        try:
            return number_state(self, State.REMOVED) / number_state(
                self, State.SUSCEPTIBLE)
        except ZeroDivisionError:
            return math.inf

    def step(self):
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self, n):
        for i in range(n):
            self.step()
コード例 #24
0
class VirusModel(Model):
    def __init__(self, num_nodes, avg_node_degree, initial_outbreak_size,
                 alpha, beta):
        self.num_nodes = num_nodes
        prob = avg_node_degree / self.num_nodes
        self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
        self.alpha = alpha
        self.beta = beta

        self.G = nx.barabasi_albert_graph(n=self.num_nodes, m=3)
        # self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
        self.grid = NetworkGrid(self.G)

        self.schedule = RandomActivation(self)

        self.datacollector = DataCollector({
            "Susceptible": number_susceptible,
            "Infected": number_infected,
            "Removed": number_removed
        })

        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = VirusAgent(
                i,
                self,
                State.SUSCEPTIBLE,
                self.alpha,
                self.beta,
            )
            self.schedule.add(a)
            self.grid.place_agent(a, node)

        # Infect some nodes
        infected_nodes = random.sample(self.G.nodes(),
                                       self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.state = State.INFECTED

        self.running = True
        self.datacollector.collect(self)

    def removed_susceptible_ratio(self):
        try:
            return number_state(self, State.REMOVED) / number_state(
                self, State.SUSCEPTIBLE)
        except ZeroDivisionError:
            return math.inf

    def step(self):
        self.schedule.step()
        self.datacollector.collect(self)

    def run_model(self, n):
        for i in range(n):
            self.step()
コード例 #25
0
    def __init__(self, N=10, pcontact=0.4, ptrans=0.5, avg_node_degree=3,
                 progression_period=3, progression_sd=2, recovery_rate=0.0193, recovery_days=1/0.0193,
                 recovery_sd=7, incubation_time = 6 , incubation_time_sd = 2, rate_infected = 1/6):
        #My shit here:
        self.num_nodes = N  
        self.pcontact=pcontact
        n = 100
        self.A_prob = np.random.rand(N,N)
        self.A = (self.A_prob<pcontact).astype('int')
        #----------------------------#
        #           Myshit
        #
        #----------------------------#
        
        
        
        
        #self.num_nodes = N  
        #self.pcontact=pcontact
        """All parameters"""
        prob = avg_node_degree / self.num_nodes

        self.initial_outbreak_size = 1
        self.incubation_time = incubation_time
        self.incubation_time_sd = incubation_time_sd
        self.rate_infected = rate_infected
        self.recovery_sd = recovery_sd
        self.ptrans = ptrans
        self.recovery_rate = recovery_rate
        self.recovery_days = recovery_days
        self.G = nx.Graph(self.A)
        self.grid = NetworkGrid(self.G)

        self.schedule = RandomActivation(self) #activate the step of Agents in random orders
        self.running = True
        #self.dead_agents = []
        """2 types of agents: intra-agent and out-agent"""
        
        # Create out_agents: 
        
        # Create intra-agents
        for i, node in enumerate(self.G.nodes()):
            a = CovidAgent(i+1, self)
            self.G.add_node(a)
            #add agent
            self.grid.place_agent(a, node)
            self.A_prob = np.random.rand(N+i,N+i)
            self.A = (self.A_prob<pcontact).astype('int')
            #make some agents infected at start
            infected = np.random.choice([0,1], p=[0.99,0.01])
            if infected == 1:
                a.state = State.INFECTED
                a.recovery_time = self.get_recovery_time()

        self.datacollector = DataCollector(            
            agent_reporters={"State": 'state'})
コード例 #26
0
ファイル: Model.py プロジェクト: mahetoodang/hiom
    def __init__(self,
                 agents=agents,
                 dt=0.1,
                 attention_delta=0.1,
                 persuasion=1,
                 a_min=-0.5,
                 r_min=0.05,
                 sd_opinion=0.15,
                 sd_info=0.005,
                 network_params=None):

        super().__init__()

        self.dt = dt
        self.attention_delta = attention_delta
        self.persuasion = persuasion
        self.a_min = a_min
        self.r_min = r_min
        self.sd_opinion = sd_opinion
        self.sd_info = sd_info

        # initialize a scheduler
        self.schedule = BaseScheduler(self)

        # create the population
        self.population = 0
        if network_params is None:
            network_params = {"method": "er", "p": 0.1}
        self.init_population(agents, network_params)
        # self.G = nx.Graph()

        # generates network topology
        # not used right now, but can be used for mesa visualization
        self.grid = NetworkGrid(self.G)

        # create agents
        self.create_agents(agents)

        # agent who will interact this turn
        self.active_agent = None

        # add datacollector
        # collects opinion, information and attention each step
        self.data_collector = DataCollector({
            "Opinion":
            lambda m: self.collect_opinions(),
            "Attention":
            lambda m: self.collect_attentions(),
            "Information":
            lambda m: self.collect_informations()
        })

        # this is required for the data_collector to work
        self.running = True
        self.data_collector.collect(self)
コード例 #27
0
class Population(Model):
    """Population
    Adapted from https://www.medrxiv.org/content/10.1101/2020.03.18.20037994v1.full.pdf

    Model Parameters:
    spread_chance: probability of infection based on contact
    gamma: mean incubation period
    alpha: probability of become asymptomatic vs symptomatic
    gamma_AR: infectious period for asymptomatic people
    gamma_YR: infectious period for symptomatic people
    delta: death rate due to disease
    """
    def __init__(self, graph, model_parameters):

        # Model initialization
        self.population_size = model_parameters['population_size']
        self.initial_outbreak_size = model_parameters['initial_outbreak_size']
        self.graph = graph
        self.grid = NetworkGrid(self.graph)
        self.schedule = SimultaneousActivation(self)

        self.datacollector = DataCollector({
            "Exposed": count_exposed,
            "Susceptible": count_susceptible,
            "Removed": count_removed,
            "Asymptomatic": count_asymptomatic,
            "Symptomatic": count_symptomatic
        })
        self.model_parameters = model_parameters

        for i, node in enumerate(self.graph.nodes()):
            a = Person(i, self, State.SUSCEPTIBLE, model_parameters)
            self.schedule.add(a)
            self.grid.place_agent(a, i)
            if i % 100 == 0:
                logger.info("Finished with agent " + str(i))

        infected_nodes = self.random.sample(self.graph.nodes(),
                                            self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.status = State.EXPOSED

        self.datacollector.collect(self)
        print("Model initialized...\n", str(self.model_parameters))

    def step(self):
        self.datacollector.collect(self)
        self.schedule.step()

    def run(self, n):
        for i in range(n):
            #logger.info("Steps Completed: " + str(i))
            #print("Steps completed: ", i)
            self.step()
コード例 #28
0
    def __init__(self, nodes, initial_RefinedKitten = 100, 
                 initial_ImperialKitten = 100, initial_CharmingKitten = 100, 
                 initial_HelixKitten = 100, initial_StaticKitten = 100,
                 initial_RemixKitten = 100):
        super().__init__()
                
        self.initial_RefinedKitten = initial_RefinedKitten
        self.initial_ImperialKitten = initial_ImperialKitten
        self.initial_CharmingKitten = initial_CharmingKitten
        self.initial_HelixKitten = initial_HelixKitten
        self.initial_StaticKitten = initial_StaticKitten
        self.initial_RemixKitten = initial_RemixKitten

        
        self.grid = NetworkGrid(G)        
        self.schedule = RandomActivationByOrg(self)
                           
        for i in range(self.initial_RefinedKitten):
            refinedkitten = RefinedKitten(self.next_id(), 'RFK', self)
            self.grid.place_agent(refinedkitten, 'RFK')
            self.schedule.add(refinedkitten)

        for i in range(self.initial_ImperialKitten):
            imperialkitten = ImperialKitten(self.next_id(), 'IK', self)
            self.grid.place_agent(imperialkitten, 'IK')
            self.schedule.add(imperialkitten)

        for i in range(self.initial_CharmingKitten):
            charmingkitten = CharmingKitten(self.next_id(), 'CK', self)
            self.grid.place_agent(charmingkitten, 'CK')
            self.schedule.add(charmingkitten)

        for i in range(self.initial_HelixKitten):
            helixkitten = HelixKitten(self.next_id(), 'HK', self)
            self.grid.place_agent(helixkitten, 'HK')
            self.schedule.add(helixkitten)

        for i in range(self.initial_StaticKitten):
            statickitten = StaticKitten(self.next_id(), 'SK', self)
            self.grid.place_agent(statickitten, 'SK')
            self.schedule.add(statickitten)

        for i in range(self.initial_RemixKitten):
            remixkitten = RemixKitten(self.next_id(), 'RMK', self)
            self.grid.place_agent(remixkitten, 'RMK')
            self.schedule.add(remixkitten)
           
        self.running = True  
        
        self.datacollector = DataCollector(
            agent_reporters = {"Organization": "org", "Spear Phishing": "phish", "Zero Day": "zeroday",
            "Tool Sophistication": "tools", "Attribution Obfuscation": "attrib",
            "Stealth": "stealth", "Information Weaponization": "iwo","DDoS": "ddos", 
            "Data Destruction": "destruct", "Critical Infrastructure Disruption": "infra"})
コード例 #29
0
 def setUp(self):
     '''
     Create a test network grid and populate with Mock Agents.
     '''
     G = nx.complete_graph(TestMultipleNetworkGrid.GRAPH_SIZE)
     self.space = NetworkGrid(G)
     self.agents = []
     for i, pos in enumerate(TEST_AGENTS_NETWORK_MULTIPLE):
         a = MockAgent(i, None)
         self.agents.append(a)
         self.space.place_agent(a, pos)
コード例 #30
0
ファイル: model.py プロジェクト: pmckiever/Energy_model
    def __init__(
        self,
        num_nodes=1740,
        avg_node_degree=3,
        initial_with_clean=174,
        change_clean_chance=0.03,
        check_frequency=1.0,
        switch_back_chance=0.02,
        gain_resistance_chance=0.0,
    ):

        self.num_nodes = num_nodes
        prob = avg_node_degree / self.num_nodes
        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.initial_with_clean = (
            initial_with_clean if initial_with_clean <= num_nodes else num_nodes
        )
        self.change_clean_chance = change_clean_chance
        self.check_frequency = check_frequency
        self.switch_back_chance = switch_back_chance
        self.gain_resistance_chance = gain_resistance_chance

        self.datacollector = DataCollector(
            {
                "has_clean": number_has_clean,
                "not_clean": number_not_clean,
                "refuses_clean": number_refuses_clean,
            }
        )

        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = VirusAgent(
                i,
                self,
                State.not_clean,
                self.change_clean_chance,
                self.check_frequency,
                self.switch_back_chance,
                self.gain_resistance_chance,
            )
            self.schedule.add(a)
            # Add the agent to the node
            self.grid.place_agent(a, node)

        # Infect some nodes
        has_clean_nodes = self.random.sample(self.G.nodes(), self.initial_with_clean)
        for a in self.grid.get_cell_list_contents(has_clean_nodes):
            a.state = State.has_clean

        self.running = True
        self.datacollector.collect(self)
コード例 #31
0
class PopuNetwork(Model):
    """
    The population network which initializes:
    - the number of agents
    - the number of incarcerated agents at start
    - the race of the simulated community
    - the average number of relationships per individual
    """
    def __init__(self,
                 num_nodes=1000,
                 avg_node_degree=3,
                 initial_outbreak_size=10,
                 race="black"):
        self.num_nodes = num_nodes
        self.race = race
        self.months = 0
        prob = avg_node_degree / self.num_nodes

        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
        self.sentence = generate_sentence(race)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes

        self.datacollector = DataCollector({
            "Incarcerated": number_incarcerated,
            "Susceptible": number_susceptible,
            "Released": number_released
        })

        for i, node in enumerate(self.G.nodes()):
            a = Person(i, self, State.SUSCEPTIBLE, self.sentence)
            self.schedule.add(a)
            self.grid.place_agent(a, node)

        # Begin with some portion of the population in prison
        infected_nodes = self.random.sample(self.G.nodes(),
                                            self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.state = State.INCARCERATED

        self.running = True
        self.datacollector.collect(self)

    def step(self):
        self.schedule.step()
        self.months += 1
        # collect data
        self.datacollector.collect(self)

    def run_model(self, n):
        for i in range(n):
            self.step()
コード例 #32
0
ファイル: model.py プロジェクト: bangtree/mesa
class VirusOnNetwork(Model):
    """A virus model with some number of agents"""

    def __init__(self, num_nodes=10, avg_node_degree=3, initial_outbreak_size=1, virus_spread_chance=0.4,
                virus_check_frequency=0.4, recovery_chance=0.3, gain_resistance_chance=0.5):

        self.num_nodes = num_nodes
        prob = avg_node_degree / self.num_nodes
        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
        self.virus_spread_chance = virus_spread_chance
        self.virus_check_frequency = virus_check_frequency
        self.recovery_chance = recovery_chance
        self.gain_resistance_chance = gain_resistance_chance

        self.datacollector = DataCollector({"Infected": number_infected,
                                            "Susceptible": number_susceptible,
                                            "Resistant": number_resistant})

        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = VirusAgent(i, self, State.SUSCEPTIBLE, self.virus_spread_chance, self.virus_check_frequency,
                           self.recovery_chance, self.gain_resistance_chance)
            self.schedule.add(a)
            # Add the agent to the node
            self.grid.place_agent(a, node)

        # Infect some nodes
        infected_nodes = self.random.sample(self.G.nodes(), self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.state = State.INFECTED

        self.running = True
        self.datacollector.collect(self)

    def resistant_susceptible_ratio(self):
        try:
            return number_state(self, State.RESISTANT) / number_state(self, State.SUSCEPTIBLE)
        except ZeroDivisionError:
            return math.inf

    def step(self):
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

    def run_model(self, n):
        for i in range(n):
            self.step()
コード例 #33
0
ファイル: model.py プロジェクト: bangtree/mesa
    def __init__(self, num_nodes=10, avg_node_degree=3, initial_outbreak_size=1, virus_spread_chance=0.4,
                virus_check_frequency=0.4, recovery_chance=0.3, gain_resistance_chance=0.5):

        self.num_nodes = num_nodes
        prob = avg_node_degree / self.num_nodes
        self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
        self.grid = NetworkGrid(self.G)
        self.schedule = RandomActivation(self)
        self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
        self.virus_spread_chance = virus_spread_chance
        self.virus_check_frequency = virus_check_frequency
        self.recovery_chance = recovery_chance
        self.gain_resistance_chance = gain_resistance_chance

        self.datacollector = DataCollector({"Infected": number_infected,
                                            "Susceptible": number_susceptible,
                                            "Resistant": number_resistant})

        # Create agents
        for i, node in enumerate(self.G.nodes()):
            a = VirusAgent(i, self, State.SUSCEPTIBLE, self.virus_spread_chance, self.virus_check_frequency,
                           self.recovery_chance, self.gain_resistance_chance)
            self.schedule.add(a)
            # Add the agent to the node
            self.grid.place_agent(a, node)

        # Infect some nodes
        infected_nodes = self.random.sample(self.G.nodes(), self.initial_outbreak_size)
        for a in self.grid.get_cell_list_contents(infected_nodes):
            a.state = State.INFECTED

        self.running = True
        self.datacollector.collect(self)
コード例 #34
0
ファイル: test_space.py プロジェクト: bangtree/mesa
 def setUp(self):
     '''
     Create a test network grid and populate with Mock Agents.
     '''
     G = nx.complete_graph(TestMultipleNetworkGrid.GRAPH_SIZE)
     self.space = NetworkGrid(G)
     self.agents = []
     for i, pos in enumerate(TEST_AGENTS_NETWORK_MULTIPLE):
         a = MockAgent(i, None)
         self.agents.append(a)
         self.space.place_agent(a, pos)
コード例 #35
0
ファイル: test_space.py プロジェクト: bangtree/mesa
class TestMultipleNetworkGrid(unittest.TestCase):
    GRAPH_SIZE = 3

    def setUp(self):
        '''
        Create a test network grid and populate with Mock Agents.
        '''
        G = nx.complete_graph(TestMultipleNetworkGrid.GRAPH_SIZE)
        self.space = NetworkGrid(G)
        self.agents = []
        for i, pos in enumerate(TEST_AGENTS_NETWORK_MULTIPLE):
            a = MockAgent(i, None)
            self.agents.append(a)
            self.space.place_agent(a, pos)

    def test_agent_positions(self):
        '''
        Ensure that the agents are all placed properly.
        '''
        for i, pos in enumerate(TEST_AGENTS_NETWORK_MULTIPLE):
            a = self.agents[i]
            assert a.pos == pos

    def test_get_neighbors(self):
        assert len(self.space.get_neighbors(0, include_center=True)) == TestMultipleNetworkGrid.GRAPH_SIZE
        assert len(self.space.get_neighbors(0, include_center=False)) == TestMultipleNetworkGrid.GRAPH_SIZE - 1

    def test_move_agent(self):
        initial_pos = 1
        agent_number = 1
        final_pos = 0

        _agent = self.agents[agent_number]

        assert _agent.pos == initial_pos
        assert _agent in self.space.G.node[initial_pos]['agent']
        assert _agent not in self.space.G.node[final_pos]['agent']
        assert len(self.space.G.node[initial_pos]['agent']) == 2
        assert len(self.space.G.node[final_pos]['agent']) == 1

        self.space.move_agent(_agent, final_pos)

        assert _agent.pos == final_pos
        assert _agent not in self.space.G.node[initial_pos]['agent']
        assert _agent in self.space.G.node[final_pos]['agent']
        assert len(self.space.G.node[initial_pos]['agent']) == 1
        assert len(self.space.G.node[final_pos]['agent']) == 2

    def test_is_cell_empty(self):
        assert not self.space.is_cell_empty(0)
        assert not self.space.is_cell_empty(1)
        assert self.space.is_cell_empty(2)

    def test_get_cell_list_contents(self):
        assert self.space.get_cell_list_contents([0]) == [self.agents[0]]
        assert self.space.get_cell_list_contents([1]) == [self.agents[1], self.agents[2]]
        assert self.space.get_cell_list_contents(list(range(TestMultipleNetworkGrid.GRAPH_SIZE))) == [self.agents[0],
                                                                                                      self.agents[1],
                                                                                                      self.agents[2]]

    def test_get_all_cell_contents(self):
        assert self.space.get_all_cell_contents() == [self.agents[0],
                                                      self.agents[1],
                                                      self.agents[2]]