class EvacuationModel(Model): """ This is a simulation of a crowd evacuation from a building. Several variables are taken into account: the knowledge of the emergency exits, the age and weight of the agents and the presence of stewards that can guide agents toward the emergency exits. Agents have different strategies to escape the building such as taking the shortest path to an exit or a random one. The goal is to study which combinations of agent types are more likely to escape the building and save themselves and how the amount of casualties varies with respect to the different variables. """ def __init__(self, N=10, K=0, width=50, height=50, fire_x=1, fire_y=1, civil_info_exchange=True): self.num_civilians = N self.num_stewards = K self.civil_info_exchange = civil_info_exchange self.fire_initial_pos = (fire_x, fire_y) self.warning_UI = "" self.agents_alive = N + K # Agents alive and inside the building self.agents_saved = [] # Agents that managed to get out self.agents_killed = [] # Agents that perished during the evacuation self.grid = SingleGrid(height, width, False) self.graph = None # General graph representing walkable terrain self.schedule = RandomActivation( self) # Every tick, agents move in a different random order # Create exits self.pos_exits = [(0, 5), (0, 25), (0, 45)] for i in range(3): self.pos_exits.append((self.grid.width - 1, 14 + i)) self.draw_environment(self.pos_exits) self.graph = path_finding.create_graph(self) # Define data collector model_collector = { "Agents killed": lambda killed: len(self.agents_killed), "Agents saved": lambda saved: len(self.agents_saved) } for exit_pos in self.pos_exits: title = "Exit {}".format(exit_pos) model_collector[title] = partial(count_agents_saved, exit_pos) self.datacollector = DataCollector(model_reporters=model_collector) # Create fire # for pos in self.fire_initial_pos: # Only 1 source of fire since we are setting it from UI x, y = self.fire_initial_pos if not self.is_inside_square((x, y), (0, 29), (25, 39)) and not self.is_inside_square( (x, y), (0, 10), (25, 20)): pos = self.fire_initial_pos else: pos = (1, 1) self.warning_UI = "<b>WARNING:</b> Sorry but the position of the fire is outside of the building, " \ "change the setting and click reset simulation." fire_agent = FireAgent(pos, self) self.schedule.add(fire_agent) self.grid.place_agent(fire_agent, pos) # Create civilian agents for i in range(self.num_civilians): # a civilian agent will know at least the main entrance to the building known_exits = self.pos_exits[-3:] a = CivilianAgent(i, self, known_exits) self.schedule.add(a) # Add the agent to a random grid cell while True: # pick the random coordinate x = self.random.randrange(1, self.grid.width - 1) y = self.random.randrange(1, self.grid.height - 1) # check if the point is empty and inside of the building if self.grid.is_cell_empty((x, y)) and not self.is_inside_square((x, y), (0, 29), (25, 39)) \ and not self.is_inside_square((x, y), (0, 10), (25, 20)): break self.grid.place_agent(a, (x, y)) # Create steward agents for i in range(self.num_civilians, self.num_civilians + self.num_stewards): # a steward agent will know all exits. known_exits = self.pos_exits a = StewardAgent(i, self, known_exits) self.schedule.add(a) # Add the agent to a random grid cell while True: # pick the random coordinate x = self.random.randrange(1, self.grid.width - 1) y = self.random.randrange(1, self.grid.height - 1) # check if the point is empty and inside of the building if self.grid.is_cell_empty((x, y)) and not self.is_inside_square((x, y), (0, 29), (25, 39)) \ and not self.is_inside_square((x, y), (0, 10), (25, 20)): break self.grid.place_agent(a, (x, y)) self.running = True # Set this to false when we want to finish simulation (e.g. all agents are out of building) self.datacollector.collect(self) @staticmethod def is_inside_square(point, bottom_left, top_right): return bottom_left[0] <= point[0] <= top_right[0] and bottom_left[ 1] <= point[1] <= top_right[1] def step(self): self.schedule.step() # collect data self.datacollector.collect(self) # Halt if no more agents in the building if self.count_agents(self) == 0: self.running = False def remove_agent(self, agent, reason, **kwargs): """ Removes an agent from the simulation. Depending on the reason it can be Args: agent (Agent): reason (Reasons): Returns: None """ if reason == Reasons.SAVED: self.agents_saved.append(agent) elif reason == Reasons.KILLED_BY_FIRE: self.agents_killed.append(agent) self.agents_alive -= 1 self.schedule.remove(agent) self.grid.remove_agent(agent) def draw_environment(self, exits=None): length_E = int(self.grid.height / 5) # length of the vertical segments of the E depth_E = int(self.grid.width / 2) # length of the horizontal segments of the E for i in range(3): start = max(0, 2 * i * length_E) self.draw_wall((0, start), (0, start + length_E - 1)) for i in range(2): start = 2 * i * length_E + length_E self.draw_wall((depth_E, start), (depth_E, start + length_E - 1)) # Horizontal lines of the E (BB) aux_y_coord = [ length_E, 2 * length_E, 3 * length_E - 1, 4 * length_E - 1 ] for y in aux_y_coord: self.draw_wall((0, y), (depth_E, y)) top_left_corner = (0, self.grid.height - 1) top_right_corner = (self.grid.width - 1, self.grid.height - 1) bottom_right_corner = (self.grid.width - 1, 0) # Draw long contour lines E self.draw_wall((0, 0), bottom_right_corner) self.draw_wall(top_left_corner, top_right_corner) self.draw_wall(bottom_right_corner, top_right_corner) # Draw exits self.draw_exits(exits) def draw_wall(self, start, end): """ Draws a line that goes from start point to end point. Args: start (List): Coordinates of line's starting point end (List): Coordinates of line's end point Returns: None """ diff_x, diff_y = np.subtract(end, start) wall_coordinates = np.asarray(start) if self.grid.is_cell_empty(wall_coordinates.tolist()): w = WallAgent(wall_coordinates.tolist(), self) self.grid.place_agent(w, wall_coordinates.tolist()) while diff_x != 0 or diff_y != 0: if abs(diff_x) == abs(diff_y): # diagonal wall wall_coordinates[0] += np.sign(diff_x) wall_coordinates[1] += np.sign(diff_y) diff_x -= 1 diff_y -= 1 elif abs(diff_x) < abs(diff_y): # wall built in y dimension wall_coordinates[1] += np.sign(diff_y) diff_y -= 1 else: # wall built in x dimension wall_coordinates[0] += np.sign(diff_x) diff_x -= 1 if self.grid.is_cell_empty(wall_coordinates.tolist()): w = WallAgent(wall_coordinates.tolist(), self) self.grid.place_agent(w, wall_coordinates.tolist()) def draw_exits(self, exits_list): for ext in exits_list: e = ExitAgent(ext, self) if not self.grid.is_cell_empty(ext): # Only walls should exist in the grid at this time, so no need to remove it from scheduler agent = self.grid.get_cell_list_contents(ext) self.grid.remove_agent(agent[0]) # Place exit self.schedule.add(e) self.grid.place_agent(e, ext) def spread_fire(self, fire_agent): fire_neighbors = self.grid.get_neighborhood(fire_agent.pos, moore=True, include_center=False) for grid_space in fire_neighbors: if self.grid.is_cell_empty(grid_space): # Create new fire agent and add it to grid and scheduler new_fire_agent = FireAgent(grid_space, self) self.schedule.add(new_fire_agent) self.grid.place_agent(new_fire_agent, grid_space) else: # If human agents, eliminate them and spread anyway agent = self.grid.get_cell_list_contents(grid_space)[0] if isinstance(agent, (CivilianAgent, StewardAgent)): new_fire_agent = FireAgent(grid_space, self) self.remove_agent(agent, Reasons.KILLED_BY_FIRE) self.schedule.add(new_fire_agent) self.grid.place_agent(new_fire_agent, grid_space) @staticmethod def count_agents(model): """ Helper method to count agents alive and still in the building. """ count = 0 for agent in model.schedule.agents: agent_type = type(agent) if (agent_type == CivilianAgent) or (agent_type == StewardAgent): count += 1 return count
class DaisyModel(Model): """ "Daisys" grow, when the temperature is right. But they influence temperature themselves via their ability to block a certain amount of sunlight (albedo, indicated by color). They spread and they mutate (changing albedo) and thus adapt to different conditions.""" def __init__(self, N, width, height, luminosity, heat_radius, mutation_range, surface_albedo, daisy_lifespan, daisy_tmin, daisy_tmax, lum_model, lum_increase): # Setup parameter self.dimensions = (width, height) self.running = True # never stop! self.num_agents = min([N, (width * height)]) # never more agents than cells self.grid = SingleGrid(width, height, torus=True) self.schedule = RandomActivation(self) # Model parameter self.mutation_range = mutation_range # default: 0.05 self.luminosity = luminosity # default 1.35 self.heat_radius = heat_radius self.surface_albedo = surface_albedo # default: 0.4 self.lum_model = lum_model self.lum_increase = lum_increase # tried 0.001 # Daisy parameter self.daisy_lifespan = daisy_lifespan self.daisy_tmin = daisy_tmin self.daisy_tmax = daisy_tmax # to inhibit using same postition twice: draw from urn position_list = [] for i in range(width): # put positions in urn for j in range(height): position_list.append((i,j)) for i in range(self.num_agents): # draw from urn a = DaisyAgent(i, self, random.uniform(0.1, 0.9), # random starting albedo self.daisy_lifespan, self.daisy_tmin, self.daisy_tmax) self.schedule.add(a) pos = random.choice(position_list) self.grid.place_agent(a, pos) position_list.remove(pos) # Data collectors self.datacollector = DataCollector( model_reporters = {"Solar irradiance": get_irradiance, "Population": get_population, "Mean albedo": get_mean_albedo, "Population: North - South": get_north_south_population } ) def step(self): print(self.lum_model) if self.lum_model == 'linear increase': self.luminosity = linear_increase(self) self.datacollector.collect(self) self.schedule.step() def get_lat(self, pos): """ The grid is meant to be a sphere. This gets the latitude. Ranges from 0.0 (equator) to 1.0 (pole). """ return (pos[1] / self.dimensions[1]) def get_GNI(self, pos): """ gives solar irradiance, depending on latitude""" return self.luminosity * math.sin(self.get_lat(pos)*math.pi) def expand_positionlist(self, pos_list): """ expands a list of positions, adding neighboring positions """ expanded_list = [] for i in pos_list: expanded_list += self.grid.get_neighborhood(i, moore=True, include_center=False) return list(set(expanded_list)) def get_local_heat(self, pos): """ Global Horizontal Irradiance (without diffusive irradiance) from pole (lower border) to pole (upper border). model is torus! """ neighborhood = self.grid.get_neighborhood(pos, moore=True, include_center=True) if self.heat_radius > 1: # if radius of local temperature is >1, this expand the position list. for i in range(self.heat_radius): neighborhood = self.expand_positionlist(neighborhood) heat = [] for i in neighborhood: if self.grid.is_cell_empty(i): # empty cell: surface albedo heat.append(self.get_GNI(pos) * (1 - self.surface_albedo) ) else: inhabitant = self.grid.get_cell_list_contents(i)[0] heat.append(self.get_GNI(pos) * (1 - inhabitant.albedo) ) # cell with daisy return sum(heat)/ len(neighborhood)
class SupermarketModel(Model): def __init__(self, type=QueueType.CLASSIC, seed=None): np.random.seed(seed) # Mesa internals self.running = True self.steps_in_day = 7200 # World related self.queue_type = QueueType[type] self.terrain_map_name = 'map' if self.queue_type == QueueType.CLASSIC else 'map_snake' with open(os.path.join(os.getcwd(), '..', 'resources', '{}.txt'.format(self.terrain_map_name))) as f: self.width, self.height = map(int, f.readline().strip().split(' ')) self.capacity = int(f.readline().strip()) self.world = [list(c) for c in f.read().split('\n') if c] self.grid = SingleGrid(self.width, self.height, True) # Agent related self.generated_customers_count = 0 self.schedule = BaseScheduler(self) self.entry_points = [] self.queues = {} self.queue_length_limit = 5 self.cashiers = {} # TODO: Merge position (cash_registers) and open # attribute (open_cashier) with cashiers dict self.cash_registers = {} self.open_cashier = set() # Pathfinding self.finder = IDAStarFinder() self.snake_entry = None self.snake_exit = None # Populate grid from world for col, line in enumerate(self.world): for row, cell in enumerate(line): if cell == 'X': self.grid[row][col] = ObstacleAgent('{}:{}'.format(col, row), self) elif cell == 'S': self.snake_entry = (row, col) elif cell == 'Z': self.snake_exit = (row, col) elif cell in ['1', '2', '3', '4', '5']: cash_register = CashRegisterAgent(cell, self, (row, col)) self.cashier_row = col self.cashiers[cell] = self.grid[row][col] = cash_register self.cash_registers[cell] = (row, col) self.queues[cell] = set() # TODO: Add (remove) only upon cashier opening (closing) self.schedule.add(cash_register) cashier = CashierAgent('Y{}'.format(cell), self, (row + 1, col), cash_register) self.grid[row + 1][col] = cashier elif cell in ['A', 'B', 'C', 'D', 'E']: self.entry_points.append((row, col, cell)) self.spawn_row = col self.lane_switch_boundary = math.ceil((self.cashier_row - self.spawn_row) * 3 / 4) self.heatmap = np.zeros((self.height, self.width)) world_matrix = np.matrix(self.world) self.distance_matrix = np.zeros((self.height, self.width)) self.distance_matrix[world_matrix == 'X'] = np.inf self.distance_matrix[world_matrix == '1'] = np.inf self.distance_matrix[world_matrix == '2'] = np.inf self.distance_matrix[world_matrix == '3'] = np.inf self.distance_matrix[world_matrix == '4'] = np.inf self.distance_matrix[world_matrix == '5'] = np.inf self.distance_matrix[world_matrix == 'Y'] = np.inf self.floor_fields = {} for dest_label, (dest_col, dest_row) in self.cash_registers.items(): floor_field = self.calculate_floor_field((dest_row, dest_col - 1)) self.floor_fields[dest_label] = floor_field.copy() # Save floor field heatmap into file # floor_field[floor_field == np.inf] = -np.inf # plt.figure(figsize=(14, 14)) # sns.heatmap(floor_field, vmin=0, fmt='.1f', vmax=np.max(floor_field), annot=True, cbar=False, square=True, cmap='mako', xticklabels=False, yticklabels=False) # plt.tight_layout() # plt.savefig(os.path.join('..', 'output', 'ff-heatmap{}.png'.format(dest_label))) # plt.close() self.datacollector = DataCollector( model_reporters={"Total": get_total_agents, "Shopping": get_shopping_agents, "Queued": get_queued_agents, "Queued (AVG)": get_avg_queued_agents, "Queued Time (AVG)": get_avg_queued_steps, "Total Time (AVG)": get_avg_total_steps, "Paying": get_paying_agents}) if self.queue_type == QueueType.SNAKE: self.distance_matrix[world_matrix == 'X'] = 1 self.distance_matrix[world_matrix == '1'] = 1 self.distance_matrix[world_matrix == '2'] = 1 self.distance_matrix[world_matrix == '3'] = 1 self.distance_matrix[world_matrix == '4'] = 1 self.distance_matrix[world_matrix == '5'] = 1 self.distance_matrix[world_matrix == 'Y'] = 1 self.movement_grid = Grid(matrix=self.distance_matrix, inverse=True) coin = self.random.randint(1, len(self.cashiers)) self.cashiers[str(coin)].set_life() coin = self.random.randint(1, len(self.cashiers)) while self.cashiers[str(coin)].open: coin = self.random.randint(1, len(self.cashiers)) self.cashiers[str(coin)].set_life() def step(self): self.current_agents = len(self.schedule.agents) - len(self.cashiers.items()) if self.schedule.steps > self.steps_in_day and get_total_agents(self) == 0 and (self.schedule.steps - 3) % 250: self.store_heatmap() self.running = False return if self.schedule.steps < self.steps_in_day and self.steps_in_day and self.schedule.steps % 25 == 0 and self.current_agents < self.capacity and self.should_spawn_agent(): self.schedule.add(self.create_agent()) self.datacollector.collect(self) self.schedule.step() self.adjust_cashiers() if self.queue_type == QueueType.SNAKE: self.assign_cash_register_to_customer() def adjust_cashiers(self): # self.current_agents > (len(opened) + 1) * self.capacity / 7 # (len(opened) + 1) * self.queue_length_limit / self.current_agents opened, closed = self.partition(self.cashiers.values(), lambda c: c.open) if len(closed) > 0: if len(opened) < self.ideal_number_of_cashier(self.schedule.steps) and self.current_agents > (len(opened) + 1) * self.queue_length_limit: coin = self.random.randint(0, len(closed) - 1) cashier = closed[coin] cashier.set_life() self.open_cashier.add(cashier.unique_id) print(Back.WHITE + Fore.GREEN + 'OPENING NEW CASH_REGISTER: {}'.format(cashier.unique_id)) if len(opened) > 2: np.random.shuffle(opened) if self.queue_type == QueueType.CLASSIC: for cashier in opened: in_queue = len(self.queues[cashier.unique_id]) if (in_queue > 1 or in_queue == 0) and len(opened) > self.ideal_number_of_cashier(self.schedule.steps) and self.current_agents < (len(opened) + 1) * self.queue_length_limit: self.close_cashier(cashier) opened.remove(cashier) break elif self.queue_type == QueueType.SNAKE: if len(opened) > self.ideal_number_of_cashier(self.schedule.steps) and self.current_agents < (len(opened) + 1) * self.queue_length_limit: to_close = opened if len(to_close) > 0: coin = self.random.randint(0, len(to_close) - 1) cashier = to_close[coin] self.close_cashier(cashier) opened.remove(cashier) [cashier.set_life(cashier.remaining_life + 25) for cashier in opened] def assign_cash_register_to_customer(self): available, busy = self.partition(self.cashiers.values(), lambda c: c.open and not c.is_busy) if (not self.grid.is_cell_empty(self.snake_exit)) and len(available) > 0: customer = self.grid.get_cell_list_contents(self.snake_exit)[0] coin = self.random.randint(0, len(available) - 1) cashier = available[coin] customer.objective = cashier.unique_id dest_col, dest_row = cashier.pos customer.destination = (dest_col - 1, dest_row) cashier.is_busy = True print(Back.WHITE + Fore.BLACK + 'ASSIGNING CASH_REGISTER {} TO CUSTOMER {}'.format(coin, customer.unique_id)) def store_heatmap(self): self.heatmap /= np.max(self.heatmap) sns.heatmap(self.heatmap, vmin=0, vmax=1) plt.savefig(os.path.join('..', 'output', 'heatmap{}.png'.format('' if self.queue_type == QueueType.CLASSIC else '-snake'))) plt.close() def close_cashier(self, cashier): cashier.open = False cashier.empty_since = 0 self.open_cashier.remove(cashier.unique_id) print(Back.WHITE + Fore.RED + 'CLOSING CASH_REGISTER: {}'.format(cashier.unique_id)) def partition(self, elements, predicate): left, right = [], [] for e in elements: (left if predicate(e) else right).append(e) return left, right def create_agent(self): agent = CustomerAgent(self.generated_customers_count, self, self.random_sprite()) self.generated_customers_count += 1 return agent def should_spawn_agent(self): relative_time = self.schedule.steps % self.steps_in_day prob = (-math.cos(relative_time * np.pi / (self.steps_in_day / 2) + 1) + 1) / 2 return self.random.random() <= 0.85 if self.random.random() <= prob else False def ideal_number_of_cashier(self, step): prob = (step % self.steps_in_day) / self.steps_in_day # if prob <= 0.125 or prob >= 0.875: # return 2 # if prob <= 0.25 or prob >= 0.75: # return 3 # if prob <= 0.375 or prob >= 0.625: # return 4 # if prob <= 0.75 or prob >= 0.25: # return 5 if prob <= 0.265 or prob >= 0.88: return 2 if prob <= 0.36 or prob >= 0.765: return 3 if prob <= 0.44 or prob >= 0.66: return 4 return 5 def random_sprite(self): sprites = [ 'images/characters/grandpa3', 'images/characters/man5', 'images/characters/man8', 'images/characters/girl', 'images/characters/girl3', 'images/characters/girl9', ] return sprites[self.random.randint(0, len(sprites) - 1)] def calculate_floor_field(self, destination): field = self.distance_matrix.copy() for row in range(len(field)): for col in range(len(field[row])): if not np.isinf(field[row, col]): field[row, col] = distance.euclidean([row, col], destination) return field
class AgentKnowledgeMap(): ''' *** Constructor: Inputs: - height and width of the grid used by the AgSimulator Actions: - Construct navigationGrid - Construct planGrid - Create agent dictionaries ''' def __init__(self, height, width, model): self.navigationGrid = SingleGrid(height, width, False) self.planGrid = MultiGrid(height, width, False) self.planAgents = defaultdict(list) self.perceptionAgents = {} self.model = model agent = FarmAgent(0, self.model.farmPos, self) self.navigationGrid.place_agent(agent, self.model.farmPos) self.attendancePoints = list() ''' *** update function is used by each ActiveAgent to update ActiveAgentKnowledgeMap Input: - ActiveAgentPlanning objects are placed on planGrid - PassiveAgentPerception objects are placed on navigationGrid ''' def update(self, agent): if (isinstance(agent, ActiveAgentPlanning)): self.planGrid.place_agent(agent, agent.pos) self.planAgents.setdefault(agent.unique_id, []) self.planAgents[agent.unique_id].append(agent) elif (isinstance(agent, PassiveAgentPerception)): if self.navigationGrid.is_cell_empty(agent.pos): self.navigationGrid.place_agent(agent, agent.pos) self.perceptionAgents[agent.unique_id] = agent else: existing_agent = self.navigationGrid.get_cell_list_contents( agent.pos)[0] existing_agent.update(agent.state, agent.time_at_current_state) # This function is used for removing a step from the KnowledgeMap def removeOneStep(self, agentID): if self.planAgents[agentID]: self.planGrid.remove_agent(self.planAgents[agentID].pop(0)) # This function is used for canceling the entire plan in case a collision is detected def cancelPlan(self, agentID): while len(self.planAgents[agentID]) > 0: self.planGrid.remove_agent(self.planAgents[agentID].pop(0)) ''' *** getGridStateAtStep returns a SingleGrid object with anticipated state of the grid at specified steps Input: - step for which the SingleGrid should be generated Output: - SingleGrid object with PassiveAgentPerception objects and ActiveAgentPlanning objects corresponding to chosen step ''' def getGridStateAtStep(self, step=0): plan_agent_keys = [uid for uid, a in self.planAgents.items()] perception_agent_keys = [ uid for uid, a in self.perceptionAgents.items() ] navGridAtStep = SingleGrid(self.navigationGrid.height, self.navigationGrid.width, False) for key in perception_agent_keys: navGridAtStep.place_agent(self.perceptionAgents[key], self.perceptionAgents[key].pos) for key in plan_agent_keys: for agent in self.planAgents[key]: if agent.steps_left == step and navGridAtStep.is_cell_empty( agent.pos): navGridAtStep.place_agent(agent, agent.pos) return navGridAtStep # This function is used to get a numpy array containing 0 and 1; # 0 for empty blocks at step X # 1 for any kind of agent at step X def getGridAtStepAsNumpyArray(self, step=0): plan_agent_keys = [uid for uid, a in self.planAgents.items()] perception_agent_keys = [ uid for uid, a in self.perceptionAgents.items() ] return_numpy_array = numpy.zeros( (self.navigationGrid.width, self.navigationGrid.height), dtype='int8') for key in perception_agent_keys: return_numpy_array[self.perceptionAgents[key].pos[1], self.perceptionAgents[key].pos[0]] = 1 for agent_key in self.planAgents: agent_plans = self.planAgents[agent_key] if len(agent_plans) > 0 and len(agent_plans) >= step: for plan in agent_plans: if plan.steps_left == step: return_numpy_array[plan.pos[1], plan.pos[0]] = 1 elif len(agent_plans) == 0: active_agent = self.model.schedule.getPassiveAgent(agent_key) return_numpy_array[active_agent.pos[1], active_agent.pos[0]] = 1 else: return_numpy_array[agent_plans[-1].pos[1], agent_plans[-1].pos[0]] = 1 return_numpy_array[self.model.farmPos[1], self.model.farmPos[0]] = 1 return return_numpy_array
class modelSim(Model): """ details of the world introduce time is when animal agents first get introduced into the wrold disp_rate is the dispersal rate for experiment 3 dist is perceptual strength for animals if fixed det is decision determinacy of animals if fixed cog_fixed determines if cognition of animals is fixed to particular values or is allowed to evolve if skip_300 is True, patchiness values are not calculated for the first 300 steps-- this makes the model run faster collect_cog_dist creates a seperate dataframe for all cognition values for agents at every timestep if evolve_disp is true, dispersion rate of plants is free to evolve """ def __init__(self, introduce_time, disp_rate, dist, det, cog_fixed = False, \ skip_300 = True, collect_cog_dist = False, evolve_disp = False): self.skip_300 = skip_300 self.cog_fixed = cog_fixed self.evolve_disp = evolve_disp self.collect_cog_dist = collect_cog_dist self.dist = dist self.det = det self.disp_rate = disp_rate self.intro_time = introduce_time (self.a1num, self.a2num) = (20, 20) self.schedule = RandomActivation( self) # agents take a step in random order self.grid = SingleGrid( 200, 200, True) # the world is a grid with specified height and width self.initialize_perception() disp = np.power(self.disp_rate, range(0, 100)) self.disp = disp / sum(disp) self.grid_ind = np.indices((200, 200)) positions = np.maximum(abs(100 - self.grid_ind[0]), abs(100 - self.grid_ind[1])) self.positions = np.minimum(positions, 200 - positions) self.agentgrid = np.zeros( (self.grid.width, self.grid.height )) # allows for calculation of patchiness of both agents self.coggrid = np.full( (self.nCogPar, self.grid.width, self.grid.height), 101.0) self.dispgrid = np.full((2, self.grid.width, self.grid.height), 101.0) self.age = [] (self.nstep, self.unique_id, self.reprod, self.food, self.death, self.combat) = (0, 0, 0, 0, 0, 0) self.cmap = colors.ListedColormap([ 'midnightblue', 'mediumseagreen', 'white', 'white', 'white', 'white', 'white' ]) #'yellow', 'orange', 'red', 'brown']) bounds = [0, 1, 2, 3, 4, 5, 6, 7] self.norm = colors.BoundaryNorm(bounds, self.cmap.N) self.expect_NN = [] self.NN = [5, 10] for i in self.NN: self.expect_NN.append( (math.factorial(2 * i) * i) / (2**i * math.factorial(i))**2) grid_ind_food = np.indices((21, 21)) positions_food = np.maximum(abs(10 - grid_ind_food[0]), abs(10 - grid_ind_food[1])) self.positions_food = np.minimum(positions_food, 21 - positions_food) if self.collect_cog_dist: self.cog_dist_dist = pd.DataFrame(columns=[]) self.cog_dist_det = pd.DataFrame(columns=[]) for i in range(self.a1num): # initiate a1 agents at random locations self.introduce_agents("A1") self.nA1 = self.a1num self.nA2 = 0 # self.agent_steps = {} def initialize_perception(self): self.history = pd.DataFrame(columns=[ "nA1", "nA2", "age", "LIP5", "LIP10", "LIPanim5", "LIPanim10", "Morsita5", "Morsita10", "Morsitaanim5", "Morsitaanim10", "NN5", "NN10", "NNanim5", "NNanim10", "reprod", "food", "death", "combat", "dist", "det", "dist_lower", "det_lower", "dist_upper", "det_upper", "dist_ci", "det_ci" ]) self.nCogPar = 2 (self.start_energy, self.eat_energy, self.tire_energy, self.reproduction_energy, self.cognition_energy) \ = (10, 5, 3, 20, 1) def introduce_agents(self, which_agent): x = random.randrange(self.grid.width) y = random.randrange(self.grid.height) if which_agent == "A1": if self.grid.is_cell_empty((x, y)): a = A1(self.unique_id, self, self.start_energy, disp_rate=0) self.unique_id += 1 self.grid.position_agent(a, x, y) self.schedule.add(a) self.agentgrid[x][y] = 1 else: self.introduce_agents(which_agent) elif which_agent == "A2": if self.cog_fixed: c = (self.dist, self.det) else: c = tuple([0] * self.nCogPar) a = A2(self.unique_id, self, self.start_energy, cognition=c, disp_rate=0) self.unique_id += 1 if self.agentgrid[x][y] == 1: die = self.grid.get_cell_list_contents([(x, y)])[0] die.dead = True self.grid.remove_agent(die) self.schedule.remove(die) self.grid.place_agent(a, (x, y)) self.schedule.add(a) self.agentgrid[x][y] = 2 self.coggrid[:, x, y] = c elif self.agentgrid[x][y] == 0: self.grid.place_agent(a, (x, y)) self.schedule.add(a) self.agentgrid[x][y] = 2 self.coggrid[:, x, y] = c def flatten_(self, n, grid, full_grid=False, mean=True, range_=False): if full_grid: return (grid[n].flatten()) i = grid[n].flatten() if mean: i = np.delete(i, np.where(i == 101)) if len(i) == 0: # if range_: return ([0] * 4) #else: # return(0) if range_: if self.cog_fixed: return ([np.mean(i)] * 4) return (np.concatenate( ([np.mean(i)], np.percentile(i, [2.5, 97.5]), self.calculate_ci(i)))) return ([np.mean(i), 0, 0, 0]) else: return (i) def calculate_ci(self, data): if np.min(data) == np.max(data): return ([0.0]) return ([ np.mean(data) - st.t.interval( 0.95, len(data) - 1, loc=np.mean(data), scale=st.sem(data))[0] ]) def return_zero(self, num, denom): if self.nstep == 1: # print("whaaat") return (0) if denom == "old_nA2": denom = self.history["nA2"][self.nstep - 2] if denom == 0.0: return 0 return (num / denom) def nearest_neighbor(self, agent): # fix this later if agent == "a1": x = np.argwhere(self.agentgrid == 1) if len(x) <= 10: return ([-1] * len(self.NN)) elif len(x) > 39990: return ([0.97, 0.99]) # if self.nstep<300 and self.skip_300: # return([-1,-1] ) else: x = np.argwhere(self.agentgrid == 2) if len(x) <= 10: return ([-1] * len(self.NN)) density = len(x) / (self.grid.width)**2 expect_NN_ = self.expect_NN expect_dist = np.array(expect_NN_) / (density**0.5) distances = [0, 0] for i in x: distx = abs(x[:, 0] - i[0]) distx[distx > 100] = 200 - distx[distx > 100] disty = abs(x[:, 1] - i[1]) disty[disty > 100] = 200 - disty[disty > 100] dist = (distx**2 + disty**2)**0.5 distances[0] += (np.partition(dist, 5)[5]) distances[1] += (np.partition(dist, 10)[10]) mean_dist = np.array(distances) / len(x) out = mean_dist / expect_dist return (out) def quadrant_patch( self, agent ): # function to calculate the patchiness index of agents at every step if agent == "a1": x = self.agentgrid == 1 else: x = self.agentgrid == 2 gsize = np.array([5, 10]) gnum = 200 / gsize qcs = [] for i in range(2): x_ = x.reshape(int(gnum[i]), gsize[i], int(gnum[i]), gsize[i]).sum(1).sum(2) mean = np.mean(x_) var = np.var(x_) if mean == 0.0: return ([-1] * 4) lip = 1 + (var - mean) / (mean**2) morsita = np.sum(x) * ((np.sum(np.power(x_, 2)) - np.sum(x_)) / (np.sum(x_)**2 - np.sum(x_))) qcs += [lip, morsita] return (qcs) def l_function(self, agent): if agent == "a1": x = np.argwhere(self.agentgrid == 1) else: x = np.argwhere(self.agentgrid == 2) if len(x) == 0: return (-1) distances = np.array([]) for i in x: distx = abs(x[:, 0] - i[0]) distx[distx > 100] = 200 - distx[distx > 100] disty = abs(x[:, 1] - i[1]) disty[disty > 100] = 200 - disty[disty > 100] dist = (distx**2 + disty**2)**0.5 distances = np.concatenate((distances, dist[dist != 0])) l = np.array([]) for i in np.arange(5, 51, 5): l = np.append(l, sum(distances < i)) k = (l * 200**2) / (len(x)**2) l = (k / math.pi)**0.5 return (abs(l - np.arange(5, 51, 5))) def collect_hist(self): if self.nstep < 300 and self.skip_300: NNcalc = [-1, -1] #self.nearest_neighbor("a1") NNanimcalc = [-1, -1] #self.nearest_neighbor("a2") else: NNcalc = self.nearest_neighbor("a1") NNanimcalc = self.nearest_neighbor("a2") quadrantcalc = self.quadrant_patch("a1") quadrantanimcalc = self.quadrant_patch("a2") dist_values = self.flatten_(0, grid=self.coggrid, mean=True, range_=False) det_values = self.flatten_(1, grid=self.coggrid, mean=True, range_=False) # l_f = 0#self.l_function("a1") dat = { "nA1": self.nA1, "nA2": self.nA2, "age": self.return_zero(sum(self.age), self.nA2), "LIP5": quadrantcalc[0], "LIP10": quadrantcalc[2], "LIPanim5": quadrantanimcalc[0], "LIPanim10": quadrantanimcalc[2], "Morsita5": quadrantcalc[1], "Morsita10": quadrantcalc[3], "Morsitaanim5": quadrantanimcalc[1], "Morsitaanim10": quadrantanimcalc[3], "NN5": NNcalc[0], "NN10": NNcalc[1], "NNanim5": NNanimcalc[0], "NNanim10": NNanimcalc[1], #"l_ripley" : l_f,# self.nearest_neighbor("a2"), "reprod": self.return_zero(self.reprod, "old_nA2"), "food": self.return_zero(self.food, self.nA2), "death": self.return_zero(self.death, "old_nA2"), "combat": self.return_zero(self.combat, "old_nA2"), "dist": dist_values[0], "det": det_values[0], "dist_lower": dist_values[1], "det_lower": det_values[1], "dist_upper": dist_values[2], "det_upper": det_values[2], "dist_ci": dist_values[3], "det_ci": det_values[3], "disp_a1": self.flatten_(0, grid=self.dispgrid)[0], "disp_a2": self.flatten_(1, grid=self.dispgrid)[0] } self.history = self.history.append(dat, ignore_index=True) self.age = [] (self.reprod, self.food, self.death, self.combat) = (0, 0, 0, 0) if self.collect_cog_dist: if (self.nstep % 10) == 0: self.cog_dist_dist[str(self.nstep - 1)] = self.flatten_( 0, grid=self.coggrid, full_grid=True, mean=False) self.cog_dist_det[str(self.nstep - 1)] = self.flatten_( 1, grid=self.coggrid, full_grid=True, mean=False) def step(self): self.nstep += 1 # step counter if self.nstep == self.intro_time: for i in range(self.a2num): self.introduce_agents("A2") self.schedule.step() self.nA1 = np.sum(self.agentgrid == 1) self.nA2 = np.sum(self.agentgrid == 2) self.collect_hist() if self.nstep % 10 == 0: sys.stdout.write((str(self.nstep) + " " + str(self.nA1) + " " + str(self.nA2) + "\n")) def visualize(self): f, ax = plt.subplots(1) self.agentgrid = self.agentgrid.astype(int) ax.imshow(self.agentgrid, interpolation='nearest', cmap=self.cmap, norm=self.norm) # plt.axis("off") return (f)