コード例 #1
0
ファイル: layers.py プロジェクト: trantorznh/mesh
def attention_bias_local_2d_block(mesh,
                                  h_dim,
                                  w_dim,
                                  memory_h_dim,
                                  memory_w_dim,
                                  dtype=tf.int32):
    """Bias for attention for local blocks where attention to right is disallowed.

  Create the bias matrix by using two separate masks, one for the memory part
  which doesn't overlap with the query and second which interacts with the query
  and should be disallowed to look to the right of the current query position.

  Args:
    mesh: a MeshTensorflow object
    h_dim: a mtf.Dimension
    w_dim: a mtf.Dimension
    memory_h_dim: a mtf.Dimension
    memory_w_dim: a mtf.Dimension
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [block_length, memory_length]
  """
    memory_height = mtf.Dimension(memory_h_dim.name, h_dim.size)
    memory_width = mtf.Dimension(memory_w_dim.name, w_dim.size)
    mask_top_visible = mtf.zeros(mesh, [h_dim, memory_height], dtype=dtype)
    mask_left_visible = mtf.zeros(mesh, [w_dim, memory_width], dtype=dtype)
    mask_query = mtf.greater(mtf.range(mesh, memory_height, dtype=tf.int32),
                             mtf.range(mesh, memory_width, dtype=dtype))
    width_mask = mtf.concat([mask_left_visible, mask_query], memory_width.name)
    mask = mtf.cast(mtf.concat([mask_top_visible, width_mask],
                               memory_height.name),
                    dtype=tf.float32) * -1e9
    return mask
コード例 #2
0
ファイル: layers.py プロジェクト: tspannhw/mesh
def attention_bias_local_block(mesh,
                               block_length,
                               memory_length,
                               dtype=tf.int32):
    """Bias for attention for local blocks where attention to right is disallowed.

  Create the bias matrix by using two separate masks, one for the memory part
  which doesn't overlap with the query and second which interacts with the query
  and should be disallowed to look to the right of the current query position.

  Args:
    mesh: a MeshTensorflow object
    block_length: a mtf.Dimension
    memory_length: a mtf.Dimension
    dtype: a tf.dtype

  Returns:
    a mtf.Tensor with shape [block_length, memory_length]
  """
    memory_length = mtf.Dimension(memory_length.name, block_length.size)
    memory_mask = mtf.zeros(mesh, [block_length, memory_length], dtype=dtype)

    mask = mtf.cast(mtf.less(mtf.range(mesh, block_length, dtype=dtype),
                             mtf.range(mesh, memory_length, dtype=dtype)),
                    dtype=dtype)
    mask = mtf.cast(mtf.concat([memory_mask, mask], memory_length.name),
                    dtype=tf.float32) * -1e9
    return mask
コード例 #3
0
ファイル: layers.py プロジェクト: trantorznh/mesh
def compress_mean(x, dim, compression_factor):
    """Compress by taking group means.

  Args:
    x: a Tensor
    dim: a dimension in x.shape
    compression_factor: an integer

  Returns:
    a Tensor
  """
    dims = x.shape.dims
    pos = dims.index(dim)
    compressed_dim = mtf.Dimension(dim.name, dim.size // compression_factor)
    compression_factor_dim = mtf.Dimension("compression_factor",
                                           compression_factor)
    new_shape = (dims[:pos] + [compressed_dim, compression_factor_dim] +
                 dims[pos + 1:])
    x = mtf.reshape(x, new_shape)
    x = mtf.reduce_mean(x, reduced_dim=compression_factor_dim)
    return x
コード例 #4
0
ファイル: layers.py プロジェクト: trantorznh/mesh
def multihead_attention_vars(mesh, heads, io_channels, kv_channels,
                             master_dtype, slice_dtype, activation_dtype):
    """Create Parameters for Multihead Attention.

  Args:
    mesh: a Mesh
    heads: a Dimension
    io_channels: a Dimension
    kv_channels: a Dimension
    master_dtype: a tf.dtype
    slice_dtype: a tf.dtype
    activation_dtype: a tf.dtype

  Returns:
    q_var: a Tensor with shape [heads, io_channels, kv_channels]
    k_var: a Tensor with shape [heads, io_channels, kv_channels]
    v_var: a Tensor with shape [heads, io_channels, kv_channels]
    o_var: a Tensor with shape [heads, io_channels, kv_channels]
  """
    qkvo = mtf.Dimension("qkvo", 4)
    qk_stddev = (io_channels.size**-0.5) * (kv_channels.size**-0.25)
    v_stddev = io_channels.size**-0.5
    o_stddev = (io_channels.size * heads.size)**-0.5

    def qkvo_initializer(shape,
                         dtype=None,
                         partition_info=None,
                         verify_shape=None):
        del partition_info, verify_shape
        return tf.random_normal(shape, dtype=dtype) * tf.reshape(
            tf.cast([qk_stddev, qk_stddev, v_stddev, o_stddev], dtype
                    or tf.float32), [4, 1, 1, 1])

    var = mtf.get_variable(mesh,
                           "qkvo",
                           mtf.Shape([qkvo, heads, io_channels, kv_channels]),
                           initializer=qkvo_initializer,
                           master_dtype=master_dtype,
                           slice_dtype=slice_dtype,
                           activation_dtype=activation_dtype)
    q_var, k_var, v_var, o_var = mtf.unstack(var, qkvo)
    return q_var, k_var, v_var, o_var
コード例 #5
0
ファイル: layers.py プロジェクト: tspannhw/mesh
def dense_relu_dense(x,
                     hidden_channels,
                     dropout=0.0,
                     dropout_broadcast_dims=None,
                     name=None):
    """Hidden layer with ReLU activation followed by linear projection.

  The output has the same number of channels as the input.

  Args:
    x: a mtf.Tensor
    hidden_channels: a mtf.Dimension - channels in the hidden layer
    dropout: an optional float
    dropout_broadcast_dims: an optional list of mtf.Dimension
    name: an optional string

  Returns:
    a mtf.Tensor with the same shape as x.
  """
    with tf.variable_scope(name, default_name="dense_relu_dense"):
        io_channels = x.shape.dims[-1]
        stddev = (hidden_channels.size * io_channels.size)**-0.25
        io = mtf.Dimension("io", 2)
        w = mtf.get_variable(
            x.mesh,
            "kernel",
            mtf.Shape([io, io_channels, hidden_channels]),
            initializer=tf.random_normal_initializer(stddev=stddev),
            activation_dtype=x.dtype)
        wi, wo = mtf.unstack(w, io)
        h = mtf.relu(mtf.einsum([x, wi]))
        if dropout != 0.0:
            h = mtf.dropout(h,
                            1.0 - dropout,
                            noise_shape=h.shape - dropout_broadcast_dims)
        return mtf.einsum([h, wo])
コード例 #6
0
  def grow_topk(i, alive_seq, alive_log_probs, states=None):
    r"""Inner beam search loop.

    This function takes the current alive sequences, and grows them to topk
    sequences where k = 2*beam. We use 2*beam because, we could have beam_size
    number of sequences that might hit <EOS> and there will be no alive
    sequences to continue. With 2*beam_size, this will not happen. This relies
    on the assumption the vocab size is > beam size. If this is true, we'll
    have at least beam_size non <EOS> extensions if we extract the next top
    2*beam words.
    Length penalty is given by = (5+len(decode)/6) ^ -\alpha. Pls refer to
    https://arxiv.org/abs/1609.08144.

    Args:
      i: loop index
      alive_seq: Topk sequences decoded so far [batch, beam, length]
      alive_log_probs: probabilities of these sequences. [batch, beam]
      states: optional list of mtf.Tensor
    Returns:
      Tuple of
        (Topk sequences extended by the next word,
         The log probs of these sequences,
         The scores with length penalty of these sequences,
         Flags indicating which of these sequences have finished decoding,
         list of transformed decoding states)
    """
    logits, new_states = logits_fn(i, alive_seq, states)
    batch_dim, beam_dim, vocab_dim = logits.shape.dims

    # Convert logits to normalized log probs
    candidate_log_probs = mtf.log_softmax(logits, vocab_dim)

    # Multiply the probabilities by the current probabilities of the beam.
    # (batch_size, beam_size, vocab_size) + (batch_size, beam_size, 1)
    log_probs = candidate_log_probs + alive_log_probs

    length_penalty = mtf.pow(((5. + mtf.cast(i + 1, logits.dtype)) / 6.), alpha)

    curr_scores = log_probs / length_penalty

    # scores have shape [batch, beam, vocab]
    beam_and_vocab_dim = mtf.Dimension(
        "beam_and_vocab", beam_dim.size * vocab_dim.size)
    flat_shape = mtf.Shape([batch_dim, beam_and_vocab_dim])
    double_beam = mtf.Dimension("double_beam", beam_dim.size * 2)
    # Flatten out (beam_size, vocab_size) probs in to a list of possibilities
    flat_curr_scores = mtf.reshape(curr_scores, flat_shape)

    top_ids, top_scores = mtf.top_k(
        flat_curr_scores, reduced_dim=beam_and_vocab_dim, new_dim=double_beam)

    # Recovering the log probs because we will need to send them back
    top_log_probs = top_scores * length_penalty

    # Work out what beam the top probs are in.
    top_beam_index = top_ids // vocab_dim.size
    top_ids %= vocab_dim.size  # Unflatten the ids

    def my_gather(tensor):
      return mtf.gather(
          tensor, top_beam_index, beam_dim,
          output_shape=mtf.Shape(
              [double_beam if d == beam_dim else d for d in tensor.shape.dims]))

    # Gather up the most probable 2*beams both for the ids and finished_in_alive
    # bools
    top_seq = my_gather(alive_seq)

    if states:
      states = [my_gather(state) for state in new_states]

    # Append the most probable alive
    top_seq += top_ids * mtf.one_hot(i, length_dim, dtype=tf.int32)
    top_finished = mtf.equal(top_ids, eos_id)

    return top_seq, top_log_probs, top_scores, top_finished, states
コード例 #7
0
ファイル: layers.py プロジェクト: tspannhw/mesh
def masked_local_attention_1d(query_antecedent,
                              memory_antecedent,
                              kv_channels,
                              heads,
                              block_length=128,
                              name=None):
    """Attention to the source position and a neighborhood to the left of it.

  The sequence is divided into blocks of length block_size.
  Attention for a given query position can only see memory positions
  less than or equal to the query position, in the corresponding block
  and the previous block.

  Args:
    query_antecedent: a mtf.Tensor with shape [batch, query_length, io_channels]
    memory_antecedent: a mtf.Tensor with shape
      [batch, memory_length, io_channels] (optional). Currently, memory_length
      must have the same size as query_length, but a different name.
    kv_channels: a mtf.Dimension (the size of the key and value vectors)
    heads: a mtf.Dimension (the number of heads)
    block_length: an integer, representing receptive fields for attention.
    name: an optional string.

  Returns:
    a Tensor of shape [batch, query_length, io_channels]

  Raises:
    ValueError: if channels or depth don't match.
  """
    with tf.variable_scope(name,
                           default_name="multihead_attention",
                           values=[query_antecedent, memory_antecedent]):

        batch, query_length, io_channels = query_antecedent.shape.dims
        q_var, k_var, v_var, o_var = multihead_attention_vars(
            query_antecedent.mesh, heads, io_channels, kv_channels,
            query_antecedent.dtype)

        if memory_antecedent is None:
            memory_antecedent = rename_length_to_memory_length(
                query_antecedent, query_length.name)
        memory_batch, memory_length, memory_channels = memory_antecedent.shape.dims
        if memory_batch != batch:
            raise ValueError("memory batch must equal query batch")
        if memory_channels != io_channels:
            raise ValueError("memory channels must equal query channels")

        # Get query q, keys k and values v.
        q = mtf.einsum([query_antecedent, q_var],
                       mtf.Shape([batch, heads, query_length, kv_channels]))
        k = mtf.einsum([memory_antecedent, k_var],
                       mtf.Shape([batch, heads, memory_length, kv_channels]))
        v = mtf.einsum([memory_antecedent, v_var],
                       mtf.Shape([batch, heads, memory_length, kv_channels]))

        # Let's assume for now we don't have padding and the block length equally
        # divides the memory length.
        block_length = (query_length.size if
                        query_length.size < block_length * 2 else block_length)
        blength = mtf.Dimension("block_length", block_length)
        mlength = mtf.Dimension("mem_block_length", block_length)
        num_blocks = mtf.Dimension("num_blocks",
                                   query_length.size // block_length)

        q = mtf.reshape(
            q, mtf.Shape([batch, heads, num_blocks, blength, kv_channels]))
        k = mtf.reshape(
            k, mtf.Shape([batch, heads, num_blocks, mlength, kv_channels]))
        v = mtf.reshape(
            v, mtf.Shape([batch, heads, num_blocks, mlength, kv_channels]))

        # compute attention for the first query block.
        def first_block_attention():
            """Compute attention for the first block."""
            first_q = mtf.slice(q, 0, 1, num_blocks.name)
            first_k = mtf.slice(k, 0, 1, num_blocks.name)
            first_v = mtf.slice(v, 0, 1, num_blocks.name)
            first_output = dot_product_attention(first_q,
                                                 first_k,
                                                 first_v,
                                                 mask=None)
            return first_output

        # Attention for first block, since query_length = key_length.
        first_output = first_block_attention()

        # Concatenate two adjacent blocks to compute the overlapping memory block.
        def local(x):
            """Helper function to get memory blocks."""
            prev_block = mtf.slice(x, 0, num_blocks.size - 1, num_blocks.name)
            cur_block = mtf.slice(x, 1, num_blocks.size - 1, num_blocks.name)
            local_block = mtf.concat([prev_block, cur_block], mlength.name)
            return local_block

        local_k = local(k)
        local_v = local(v)
        # Calculate the causal mask to avoid peeking into the future. We compute
        # this once and reuse it for all blocks since the block_size is known.
        mlength = local_k.shape.dims[3]
        mask = attention_bias_local_block(query_antecedent.mesh, blength,
                                          mlength)

        # Remove the first block from q since we already computed that.
        tail_q = mtf.slice(q, 1, num_blocks.size - 1, num_blocks.name)

        tail_output = dot_product_attention(tail_q,
                                            local_k,
                                            local_v,
                                            mask=mask)

        # Now concatenate the first and rest of the blocks.
        final_output = mtf.concat([first_output, tail_output], num_blocks.name)
        final_output = mtf.reshape(
            final_output, mtf.Shape([batch, heads, query_length, kv_channels]))
        return mtf.einsum([final_output, o_var],
                          mtf.Shape([batch, query_length, io_channels]))
コード例 #8
0
ファイル: beam_search.py プロジェクト: mzj14/mesh
    def inner_loop(i, alive_seq, alive_log_probs, finished_seq,
                   finished_scores, finished_flags, *states):
        """Inner beam search loop.

    There are three groups of tensors, alive, finished, and topk.
    The alive group contains information about the current alive sequences
    The topk group contains information about alive + topk current decoded words
    the finished group contains information about finished sentences, that is,
    the ones that have decoded to <EOS>. These are what we return.
    The general beam search algorithm is as follows:
    While we haven't terminated (pls look at termination condition)
      1. Grow the current alive to get beam*2 topk sequences
      2. Among the topk, keep the top beam_size ones that haven't reached EOS
      into alive
      3. Among the topk, keep the top beam_size ones have reached EOS into
      finished
    Repeat
    To make things simple with using fixed size tensors, we will end
    up inserting unfinished sequences into finished in the beginning. To stop
    that we add -ve INF to the score of the unfinished sequence so that when a
    true finished sequence does appear, it will have a higher score than all the
    unfinished ones.

    Args:
      i: loop index
      alive_seq: Topk sequences decoded so far [batch_size, beam_size, i+1]
      alive_log_probs: probabilities of the beams. [batch_size, beam_size]
      finished_seq: Current finished sequences.
        [batch_size, beam_size, i+1]
      finished_scores: scores for each of these sequences.
        [batch_size, beam_size]
      finished_flags: finished bools for each of these sequences.
        [batch_size, beam_size]
      *states: mtf Tensors

    Returns:
      Tuple of
        (Incremented loop index
         New alive sequences,
         Log probs of the alive sequences,
         New finished sequences,
         Scores of the new finished sequences,
         Flags indicating which sequence in finished as reached EOS,
         dict of final decoding states)
    """

        # Each inner loop, we carry out three steps:
        # 1. Get the current topk items.
        # 2. Extract the ones that have finished and haven't finished
        # 3. Recompute the contents of finished based on scores.
        (top2k_seq, top2k_log_probs, top2k_scores, top2k_finished, new_states,
         first_selector) = grow_topk(i, alive_seq, alive_log_probs, states)
        alive_seq, alive_log_probs, _, second_selector = grow_alive(
            top2k_seq, top2k_scores, top2k_log_probs, top2k_finished)
        finished_seq, finished_scores, finished_flags, _ = grow_finished(
            finished_seq, finished_scores, finished_flags, top2k_seq,
            top2k_scores, top2k_finished)
        old_beam_dim = mtf.Dimension("old_beam", beam_dim.size)
        selector = mtf.einsum([
            mtf.rename_dimension(first_selector, beam_dim.name,
                                 old_beam_dim.name), second_selector
        ],
                              output_shape=[batch_dim, old_beam_dim, beam_dim])
        new_states = [
            mtf.einsum([
                mtf.rename_dimension(state, beam_dim.name, old_beam_dim.name),
                mtf.cast(selector, state.dtype)
            ],
                       reduced_dims=[old_beam_dim],
                       output_shape=state.shape) for state in new_states
        ]
        return (i + 1, alive_seq, alive_log_probs, finished_seq,
                finished_scores, finished_flags) + tuple(new_states)
コード例 #9
0
ファイル: layers.py プロジェクト: trantorznh/mesh
def masked_local_attention_1d(x,
                              kv_channels,
                              heads,
                              window_size=128,
                              master_dtype=tf.float32,
                              slice_dtype=tf.float32,
                              length_per_split=None,
                              name=None):
    """Attention to the source position and a neighborhood to the left of it.

  Attention for a given query position p can only see memory positions
  in the range (p - window_size, p].

  Args:
    x: a mtf.Tensor with shape batch_dims + [length, io_channels]
    kv_channels: a mtf.Dimension (the size of the key and value vectors)
    heads: a mtf.Dimension (the number of heads)
    window_size: an integer
    master_dtype: a tf.dtype
    slice_dtype: a tf.dtype
    length_per_split: an optional integer indicating the part of the length
      dimension per processor.  You can omit if the length dimension is not
      split.
    name: an optional string.

  Returns:
    a Tensor with the same shape as x

  Raises:
    ValueError: if channels or depth don't match.
  """
    with tf.variable_scope(name,
                           default_name="masked_local_attention_1d",
                           values=[x]):

        batch_dims = x.shape.dims[:-2]
        length, io_channels = x.shape.dims[-2:]
        q_var, k_var, v_var, o_var = multihead_attention_vars(
            x.mesh, heads, io_channels, kv_channels, master_dtype, slice_dtype,
            x.dtype)

        # Get query q, keys k and values v.
        qkv_shape = mtf.Shape(batch_dims + [heads, length, kv_channels])
        q = mtf.einsum([x, q_var], qkv_shape)
        k = mtf.einsum([x, k_var], qkv_shape)
        v = mtf.einsum([x, v_var], qkv_shape)

        # Choose a suitable block size.
        # We choose the greatest divisor of length_per_split less than or equal
        # to max(window_size, 128)
        if length_per_split is None:
            length_per_split = length.size
        block_length = max(window_size, 128)
        while length_per_split % block_length != 0:
            block_length -= 1

        query_block_length = mtf.Dimension("query_block_length", block_length)
        memory_block_length = mtf.Dimension("memory_block_length",
                                            block_length)
        # The num_blocks dimension gets the same name as the length dimension,
        # so it will be split in the same way.
        num_blocks = mtf.Dimension(length.name, length.size // block_length)
        q_shape = batch_dims + [
            heads, num_blocks, query_block_length, kv_channels
        ]
        kv_shape = batch_dims + [
            heads, num_blocks, memory_block_length, kv_channels
        ]
        q = mtf.reshape(q, q_shape)
        k = mtf.reshape(k, kv_shape)
        v = mtf.reshape(v, kv_shape)
        # augment the keys and values for each block with keys and values for
        # the previous window_size timesteps.
        k = mtf.left_halo_exchange(k, num_blocks, memory_block_length,
                                   window_size)
        v = mtf.left_halo_exchange(v, num_blocks, memory_block_length,
                                   window_size)
        padded_memory_block_length = mtf.Dimension("memory_block_length",
                                                   window_size + block_length)
        mpos = mtf.range(x.mesh, padded_memory_block_length, tf.float32)
        qpos = mtf.range(x.mesh, query_block_length, tf.float32) + window_size
        # prevent looking forward
        mask = mtf.cast(mtf.greater(mpos, qpos), x.dtype) * -1e9
        # prevent looking >=block_length timesteps backward
        mask += mtf.cast(mtf.less_equal(mpos, qpos - block_length),
                         x.dtype) * -1e9
        # Note: The first window_size-1 positions can see back into pre-time
        # where all the keys and values are zero.  We could mask this out, but we
        # don't.
        o = dot_product_attention(q, k, v, mask=mask)
        o = mtf.reshape(o, batch_dims + [heads, length, kv_channels])
        return mtf.einsum([o, o_var],
                          mtf.Shape(batch_dims + [length, io_channels]))