コード例 #1
0
def in_degrees(g: Mapping):
    """
    >>> g = dict(a='c', b='ce', c='abde', d='c', e=['c', 'z'], f={})
    >>> assert dict(in_degrees(g)) == (
    ... {'a': 1, 'b': 1, 'c': 4,  'd': 1, 'e': 2, 'f': 0, 'z': 1}
    ... )
    """
    return out_degrees(edge_reversed_graph(g))
コード例 #2
0
def leaf_nodes(g: Mapping):
    """
    >>> g = dict(a='c', b='ce', c='abde', d='c', e=['c', 'z'], f={})
    >>> sorted(leaf_nodes(g))
    ['f', 'z']

    Note that `f` is present: Isolated nodes are considered both as
    root and leaf nodes both.
    """
    return root_nodes(edge_reversed_graph(g))
コード例 #3
0
def parents(g: Mapping, source: Iterable):
    """Set of all nodes (not in source) adjacent TO 'source' in 'g'

    >>> g = {
    ...     0: [1, 2],
    ...     1: [2, 3, 4],
    ...     2: [1, 4],
    ...     3: [4]
    ... }
    >>> parents(g, [2, 3])
    {0, 1}
    >>> parents(g, [0])
    set()
    """
    return children(edge_reversed_graph(g), source)
コード例 #4
0
def descendants(g: Mapping, source: Iterable, _exclude_nodes=None):
    """Returns the set of all nodes reachable FROM `source` in `g`.

    >>> g = {
    ...     0: [1, 2],
    ...     1: [2, 3, 4],
    ...     2: [1, 4],
    ...     3: [4]
    ... }
    >>> descendants(g, [2, 3])
    {1, 4}
    >>> descendants(g, [4])
    set()
    """
    return ancestors(edge_reversed_graph(g), source, _exclude_nodes)
コード例 #5
0
def predecessors(g: Mapping, node):
    """Iterator of nodes that have directed paths TO node

    >>> g = {
    ...     0: [1, 2],
    ...     1: [2, 3, 4],
    ...     2: [1, 4],
    ...     3: [4]}
    >>> set(predecessors(g, 4))
    {0, 1, 2, 3}
    >>> set(predecessors(g, 2))
    {0, 1, 2}
    >>> set(predecessors(g, 0))
    set()

    Notice that 2 is a predecessor of 2 here because of the presence
    of a 2-1-2 directed path.
    """
    yield from successors(edge_reversed_graph(g), node)