コード例 #1
0
def all_refine(num_mesh, depth, fname):
    from meshmode.mesh.generation import (  # noqa
            generate_icosphere, generate_icosahedron,
            generate_torus, generate_regular_rect_mesh,
            generate_box_mesh)
    import timeit
    nelements = []
    runtimes = []
    for el_fact in range(2, num_mesh+2):
        mesh = generate_box_mesh(3*(np.linspace(0, 1, el_fact),))
        r = Refiner(mesh)
        for time in range(depth):
            flags = np.ones(len(mesh.groups[0].vertex_indices))
            if time < depth-1:
                mesh = r.refine(flags)
            else:
                start = timeit.default_timer()
                mesh = r.refine(flags)
                stop = timeit.default_timer()
                nelements.append(mesh.nelements)
                runtimes.append(stop-start)
        check_nodal_adj_against_geometry(mesh)
    import matplotlib.pyplot as pt
    pt.plot(nelements, runtimes, "o")
    pt.savefig(fname)
    pt.clf()
コード例 #2
0
def all_refine(num_mesh, depth, fname):
    from meshmode.mesh.generation import (  # noqa
        generate_icosphere, generate_icosahedron, generate_torus,
        generate_regular_rect_mesh, generate_box_mesh)
    import timeit
    nelements = []
    runtimes = []
    for el_fact in range(2, num_mesh + 2):
        mesh = generate_box_mesh(3 * (np.linspace(0, 1, el_fact), ))
        r = Refiner(mesh)
        for time in range(depth):
            flags = np.ones(len(mesh.groups[0].vertex_indices))
            if time < depth - 1:
                mesh = r.refine(flags)
            else:
                start = timeit.default_timer()
                mesh = r.refine(flags)
                stop = timeit.default_timer()
                nelements.append(mesh.nelements)
                runtimes.append(stop - start)
        check_nodal_adj_against_geometry(mesh)
    import matplotlib.pyplot as pt
    pt.plot(nelements, runtimes, "o")
    pt.savefig(fname)
    pt.clf()
コード例 #3
0
def get_sphere_mesh(refinement_increment, target_order):
    from meshmode.mesh.generation import generate_icosphere
    mesh = generate_icosphere(1, target_order)
    from meshmode.mesh.refinement import Refiner

    refiner = Refiner(mesh)
    for i in range(refinement_increment):
        flags = np.ones(mesh.nelements, dtype=bool)
        refiner.refine(flags)
        mesh = refiner.get_current_mesh()

    return mesh
コード例 #4
0
def get_sphere_mesh(refinement_increment, target_order):
    from meshmode.mesh.generation import generate_icosphere
    mesh = generate_icosphere(1, target_order)
    from meshmode.mesh.refinement import Refiner

    refiner = Refiner(mesh)
    for i in range(refinement_increment):
        flags = np.ones(mesh.nelements, dtype=bool)
        refiner.refine(flags)
        mesh = refiner.get_current_mesh()

    return mesh
コード例 #5
0
def test_refinement(case_name, mesh_gen, flag_gen, num_generations):
    from random import seed
    seed(13)

    mesh = mesh_gen()

    r = Refiner(mesh)

    for _ in range(num_generations):
        flags = flag_gen(mesh)
        mesh = r.refine(flags)

        check_nodal_adj_against_geometry(mesh)
コード例 #6
0
ファイル: test_refinement.py プロジェクト: inducer/meshmode
def test_refinement(case_name, mesh_gen, flag_gen, num_generations):
    from random import seed
    seed(13)

    mesh = mesh_gen()

    r = Refiner(mesh)

    for _ in range(num_generations):
        flags = flag_gen(mesh)
        mesh = r.refine(flags)

        check_nodal_adj_against_geometry(mesh)
コード例 #7
0
def uniform_refine(num_mesh, fract, depth, fname):
    from meshmode.mesh.generation import (  # noqa
            generate_icosphere, generate_icosahedron,
            generate_torus, generate_regular_rect_mesh,
            generate_box_mesh)
    import timeit
    nelements = []
    runtimes = []
    for el_fact in range(2, num_mesh+2):
        mesh = generate_box_mesh(3*(np.linspace(0, 1, el_fact),))
        r = Refiner(mesh)
        all_els = list(range(mesh.nelements))
        for time in range(depth):
            print("EL_FACT", el_fact, "TIME", time)
            flags = np.zeros(mesh.nelements)
            from random import shuffle, seed
            seed(1)
            shuffle(all_els)
            nels_this_round = 0
            for i in range(len(all_els)):
                if i / len(flags) > fract:
                    break
                flags[all_els[i]] = 1
                nels_this_round += 1

            if time < depth-1:
                mesh = r.refine(flags)
            else:
                start = timeit.default_timer()
                mesh = r.refine(flags)
                stop = timeit.default_timer()
                nelements.append(mesh.nelements)
                runtimes.append(stop-start)
            all_els = []
            for i in range(len(flags)):
                if flags[i]:
                    all_els.append(i)
            for i in range(len(flags), mesh.nelements):
                all_els.append(i)
            check_nodal_adj_against_geometry(mesh)

    import matplotlib.pyplot as pt
    pt.plot(nelements, runtimes, "o")
    pt.savefig(fname)
    pt.clf()
コード例 #8
0
def uniform_refine(num_mesh, fract, depth, fname):
    from meshmode.mesh.generation import (  # noqa
            generate_icosphere, generate_icosahedron,
            generate_torus, generate_regular_rect_mesh,
            generate_box_mesh)
    import timeit
    nelements = []
    runtimes = []
    for el_fact in range(2, num_mesh+2):
        mesh = generate_box_mesh(3*(np.linspace(0, 1, el_fact),))
        r = Refiner(mesh)
        all_els = list(range(mesh.nelements))
        for time in range(depth):
            print("EL_FACT", el_fact, "TIME", time)
            flags = np.zeros(mesh.nelements)
            from random import shuffle, seed
            seed(1)
            shuffle(all_els)
            nels_this_round = 0
            for i in range(len(all_els)):
                if i / len(flags) > fract:
                    break
                flags[all_els[i]] = 1
                nels_this_round += 1

            if time < depth-1:
                mesh = r.refine(flags)
            else:
                start = timeit.default_timer()
                mesh = r.refine(flags)
                stop = timeit.default_timer()
                nelements.append(mesh.nelements)
                runtimes.append(stop-start)
            all_els = []
            for i in range(len(flags)):
                if flags[i]:
                    all_els.append(i)
            for i in range(len(flags), mesh.nelements):
                all_els.append(i)
            check_nodal_adj_against_geometry(mesh)

    import matplotlib.pyplot as pt
    pt.plot(nelements, runtimes, "o")
    pt.savefig(fname)
    pt.clf()
コード例 #9
0
def main():
    # cl.array.to_device(queue, numpy_array)
    from meshmode.mesh.io import generate_gmsh, FileSource
    from meshmode.mesh.generation import generate_icosphere
    from meshmode.mesh.refinement import Refiner
    mesh = generate_icosphere(1, target_order)

    refinement_increment = 1
    refiner = Refiner(mesh)
    for i in range(refinement_increment):
        flags = np.ones(mesh.nelements, dtype=bool)
        refiner.refine(flags)
        mesh = refiner.get_current_mesh()

    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    print("%d elements" % mesh.nelements)

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5 * (bbox_min + bbox_max)
    bbox_size = max(bbox_max - bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
        cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(density_discr,
                                  4 * target_order,
                                  qbx_order,
                                  fmm_order=False,
                                  fmm_backend="fmmlib")

    from pytential.symbolic.pde.maxwell import MuellerAugmentedMFIEOperator
    pde_op = MuellerAugmentedMFIEOperator(
        omega=1.0,
        epss=[1.0, 1.0],
        mus=[1.0, 1.0],
    )
    from pytential import bind, sym

    unk = pde_op.make_unknown("sigma")
    sym_operator = pde_op.operator(unk)
    sym_rhs = pde_op.rhs(sym.make_sym_vector("Einc", 3),
                         sym.make_sym_vector("Hinc", 3))
    sym_repr = pde_op.representation(1, unk)

    if 1:
        expr = sym_repr
        print(sym.pretty(expr))

        print("#" * 80)
        from pytential.target import PointsTarget

        tgt_points = np.zeros((3, 1))
        tgt_points[0, 0] = 100
        tgt_points[1, 0] = -200
        tgt_points[2, 0] = 300

        bound_op = bind((qbx, PointsTarget(tgt_points)), expr)
        print(bound_op.code)

    if 1:

        def green3e(x, y, z, source, strength, k):
            # electric field corresponding to dyadic green's function
            # due to monochromatic electric dipole located at "source".
            # "strength" is the the intensity of the dipole.
            #  E = (I + Hess)(exp(ikr)/r) dot (strength)
            #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = np.exp(1j * k * rr) / rr
            evec = fout * strength
            qmat = np.zeros((3, 3), dtype=np.complex128)

            qmat[0, 0] = (2 * dx**2 - dy**2 - dz**2) * (1 - 1j * k * rr)
            qmat[1, 1] = (2 * dy**2 - dz**2 - dx**2) * (1 - 1j * k * rr)
            qmat[2, 2] = (2 * dz**2 - dx**2 - dy**2) * (1 - 1j * k * rr)

            qmat[0, 0] = qmat[0, 0] + (-k**2 * dx**2 * rr**2)
            qmat[1, 1] = qmat[1, 1] + (-k**2 * dy**2 * rr**2)
            qmat[2, 2] = qmat[2, 2] + (-k**2 * dz**2 * rr**2)

            qmat[0, 1] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dx * dy)
            qmat[1, 2] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dy * dz)
            qmat[2, 0] = (3 - k**2 * rr**2 - 3 * 1j * k * rr) * (dz * dx)

            qmat[1, 0] = qmat[0, 1]
            qmat[2, 1] = qmat[1, 2]
            qmat[0, 2] = qmat[2, 0]

            fout = np.exp(1j * k * rr) / rr**5 / k**2

            fvec = fout * np.dot(qmat, strength)
            evec = evec + fvec
            return evec

        def green3m(x, y, z, source, strength, k):
            # magnetic field corresponding to dyadic green's function
            # due to monochromatic electric dipole located at "source".
            # "strength" is the the intensity of the dipole.
            #  H = curl((I + Hess)(exp(ikr)/r) dot (strength)) =
            #  strength \cross \grad (exp(ikr)/r)
            #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = (1 - 1j * k * rr) * np.exp(1j * k * rr) / rr**3
            fvec = np.zeros(3, dtype=np.complex128)
            fvec[0] = fout * dx
            fvec[1] = fout * dy
            fvec[2] = fout * dz

            hvec = np.cross(strength, fvec)

            return hvec

        def dipole3e(x, y, z, source, strength, k):
            #
            #  evalaute electric and magnetic field due
            #  to monochromatic electric dipole located at "source"
            #  with intensity "strength"

            evec = green3e(x, y, z, source, strength, k)
            evec = evec * 1j * k
            hvec = green3m(x, y, z, source, strength, k)
            #            print(hvec)
            #            print(strength)
            return evec, hvec

        def dipole3m(x, y, z, source, strength, k):
            #
            #  evalaute electric and magnetic field due
            #  to monochromatic magnetic dipole located at "source"
            #  with intensity "strength"
            evec = green3m(x, y, z, source, strength, k)
            hvec = green3e(x, y, z, source, strength, k)
            hvec = -hvec * 1j * k
            return evec, hvec

        def dipole3eall(x, y, z, sources, strengths, k):
            ns = len(strengths)
            evec = np.zeros(3, dtype=np.complex128)
            hvec = np.zeros(3, dtype=np.complex128)

            for i in range(ns):
                evect, hvect = dipole3e(x, y, z, sources[i], strengths[i], k)
                evec = evec + evect
                hvec = hvec + hvect

        nodes = density_discr.nodes().with_queue(queue).get()
        source = [0.01, -0.03, 0.02]
        #        source = cl.array.to_device(queue,np.zeros(3))
        #        source[0] = 0.01
        #        source[1] =-0.03
        #        source[2] = 0.02
        strength = np.ones(3)

        #        evec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))
        #        hvec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))

        evec = np.zeros((3, len(nodes[0])), dtype=np.complex128)
        hvec = np.zeros((3, len(nodes[0])), dtype=np.complex128)
        for i in range(len(nodes[0])):
            evec[:, i], hvec[:, i] = dipole3e(nodes[0][i], nodes[1][i],
                                              nodes[2][i], source, strength, k)
        print(np.shape(hvec))
        print(type(evec))
        print(type(hvec))

        evec = cl.array.to_device(queue, evec)
        hvec = cl.array.to_device(queue, hvec)

        bvp_rhs = bind(qbx, sym_rhs)(queue, Einc=evec, Hinc=hvec)
        print(np.shape(bvp_rhs))
        print(type(bvp_rhs))
        #        print(bvp_rhs)
        1 / -1

        bound_op = bind(qbx, sym_operator)

        from pytential.solve import gmres
        if 1:
            gmres_result = gmres(bound_op.scipy_op(queue,
                                                   "sigma",
                                                   dtype=np.complex128,
                                                   k=k),
                                 bvp_rhs,
                                 tol=1e-8,
                                 progress=True,
                                 stall_iterations=0,
                                 hard_failure=True)

            sigma = gmres_result.solution

        fld_at_tgt = bind((qbx, PointsTarget(tgt_points)),
                          sym_repr)(queue, sigma=sigma, k=k)
        fld_at_tgt = np.array([fi.get() for fi in fld_at_tgt])
        print(fld_at_tgt)
        fld_exact_e, fld_exact_h = dipole3e(tgt_points[0, 0], tgt_points[1, 0],
                                            tgt_points[2,
                                                       0], source, strength, k)
        print(fld_exact_e)
        print(fld_exact_h)
        1 / 0

    # }}}

    #mlab.figure(bgcolor=(1, 1, 1))
    if 1:
        from meshmode.discretization.visualization import make_visualizer
        bdry_vis = make_visualizer(queue, density_discr, target_order)

        bdry_normals = bind(density_discr, sym.normal(3))(queue)\
                .as_vector(dtype=object)

        bdry_vis.write_vtk_file("source.vtu", [
            ("sigma", sigma),
            ("bdry_normals", bdry_normals),
        ])

        fplot = FieldPlotter(bbox_center,
                             extent=2 * bbox_size,
                             npoints=(150, 150, 1))

        qbx_stick_out = qbx.copy(target_stick_out_factor=0.1)
        from pytential.target import PointsTarget
        from pytential.qbx import QBXTargetAssociationFailedException

        rho_sym = sym.var("rho")

        try:
            fld_in_vol = bind((qbx_stick_out, PointsTarget(fplot.points)),
                              sym.make_obj_array([
                                  sym.S(pde_op.kernel,
                                        rho_sym,
                                        k=sym.var("k"),
                                        qbx_forced_limit=None),
                                  sym.d_dx(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                                  sym.d_dy(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                                  sym.d_dz(
                                      3,
                                      sym.S(pde_op.kernel,
                                            rho_sym,
                                            k=sym.var("k"),
                                            qbx_forced_limit=None)),
                              ]))(queue, jt=jt, rho=rho, k=k)
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                "failed-targets.vts",
                [("failed_targets", e.failed_target_flags.get(queue))])
            raise

        fld_in_vol = sym.make_obj_array([fiv.get() for fiv in fld_in_vol])

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file("potential.vts", [
            ("potential", fld_in_vol[0]),
            ("grad", fld_in_vol[1:]),
        ])
コード例 #10
0
def test_refinement_connection(ctx_getter,
                               group_factory,
                               mesh_name,
                               dim,
                               mesh_pars,
                               mesh_order,
                               refine_flags,
                               plot_mesh=False):
    from random import seed
    seed(13)

    # Discretization order
    order = 5

    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    from meshmode.discretization import Discretization
    from meshmode.discretization.connection import (make_refinement_connection,
                                                    check_connection)

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    def f(x):
        from six.moves import reduce
        return 0.1 * reduce(lambda x, y: x * cl.clmath.sin(5 * y), x)

    for mesh_par in mesh_pars:
        # {{{ get mesh

        if mesh_name == "circle":
            assert dim == 1
            h = 1 / mesh_par
            mesh = make_curve_mesh(partial(ellipse, 1),
                                   np.linspace(0, 1, mesh_par + 1),
                                   order=mesh_order)
        elif mesh_name == "blob":
            if mesh_order == 5:
                pytest.xfail(
                    "https://gitlab.tiker.net/inducer/meshmode/issues/2")
            assert dim == 2
            h = mesh_par
            mesh = gen_blob_mesh(h, mesh_order)
        elif mesh_name == "warp":
            from meshmode.mesh.generation import generate_warped_rect_mesh
            mesh = generate_warped_rect_mesh(dim, order=mesh_order, n=mesh_par)
            h = 1 / mesh_par
        else:
            raise ValueError("mesh_name not recognized")

        # }}}

        discr = Discretization(cl_ctx, mesh, group_factory(order))

        refiner = Refiner(mesh)
        flags = refine_flags(mesh)
        refiner.refine(flags)

        connection = make_refinement_connection(refiner, discr,
                                                group_factory(order))
        check_connection(connection)

        fine_discr = connection.to_discr

        x = discr.nodes().with_queue(queue)
        x_fine = fine_discr.nodes().with_queue(queue)
        f_coarse = f(x)
        f_interp = connection(queue, f_coarse).with_queue(queue)
        f_true = f(x_fine).with_queue(queue)

        if plot_mesh:
            import matplotlib.pyplot as plt
            x = x.get(queue)
            err = np.array(np.log10(1e-16 +
                                    np.abs((f_interp - f_true).get(queue))),
                           dtype=float)
            import matplotlib.cm as cm
            cmap = cm.ScalarMappable(cmap=cm.jet)
            cmap.set_array(err)
            plt.scatter(x[0], x[1], c=cmap.to_rgba(err), s=20, cmap=cmap)
            plt.colorbar(cmap)
            plt.show()

        import numpy.linalg as la
        err = la.norm((f_interp - f_true).get(queue), np.inf)
        eoc_rec.add_data_point(h, err)

    print(eoc_rec)
    assert (eoc_rec.order_estimate() >= order - 0.5
            or eoc_rec.max_error() < 1e-14)
コード例 #11
0
ファイル: generation.py プロジェクト: inducer/meshmode
def warp_and_refine_until_resolved(
        unwarped_mesh_or_refiner, warp_callable, est_rel_interp_tolerance):
    """Given an original ("un-warped") :class:`meshmode.mesh.Mesh` and a
    warping function *warp_callable* that takes and returns a mesh and a
    tolerance to which the mesh should be resolved by the mapping polynomials,
    this function will iteratively refine the *unwarped_mesh* until relative
    interpolation error estimates on the warped version are smaller than
    *est_rel_interp_tolerance* on each element.

    :returns: The refined, un-warped mesh.

    .. versionadded:: 2018.1
    """
    from modepy.modes import simplex_onb
    from modepy.matrices import vandermonde
    from modepy.modal_decay import simplex_interp_error_coefficient_estimator_matrix
    from meshmode.mesh.refinement import Refiner, RefinerWithoutAdjacency

    if isinstance(unwarped_mesh_or_refiner, (Refiner, RefinerWithoutAdjacency)):
        refiner = unwarped_mesh_or_refiner
        unwarped_mesh = refiner.get_current_mesh()
    else:
        unwarped_mesh = unwarped_mesh_or_refiner
        refiner = Refiner(unwarped_mesh)

    iteration = 0

    while True:
        refine_flags = np.zeros(unwarped_mesh.nelements, dtype=np.bool)

        warped_mesh = warp_callable(unwarped_mesh)

        # test whether there are invalid values in warped mesh
        if not np.isfinite(warped_mesh.vertices).all():
            raise FloatingPointError("Warped mesh contains non-finite vertices "
                                     "(NaN or Inf)")

        for group in warped_mesh.groups:
            if not np.isfinite(group.nodes).all():
                raise FloatingPointError("Warped mesh contains non-finite nodes "
                                         "(NaN or Inf)")

        for egrp in warped_mesh.groups:
            dim, nunit_nodes = egrp.unit_nodes.shape

            interp_err_est_mat = simplex_interp_error_coefficient_estimator_matrix(
                    egrp.unit_nodes, egrp.order,
                    n_tail_orders=1 if warped_mesh.dim > 1 else 2)

            vdm_inv = la.inv(
                    vandermonde(simplex_onb(dim, egrp.order), egrp.unit_nodes))

            mapping_coeffs = np.einsum("ij,dej->dei", vdm_inv, egrp.nodes)
            mapping_norm_2 = np.sqrt(np.sum(mapping_coeffs**2, axis=-1))

            interp_error_coeffs = np.einsum(
                    "ij,dej->dei", interp_err_est_mat, egrp.nodes)
            interp_error_norm_2 = np.sqrt(np.sum(interp_error_coeffs**2, axis=-1))

            # max over dimensions
            est_rel_interp_error = np.max(interp_error_norm_2/mapping_norm_2, axis=0)

            refine_flags[
                    egrp.element_nr_base:
                    egrp.element_nr_base+egrp.nelements] = \
                            est_rel_interp_error > est_rel_interp_tolerance

        nrefined_elements = np.sum(refine_flags.astype(np.int32))
        if nrefined_elements == 0:
            break

        logger.info("warp_and_refine_until_resolved: "
                "iteration %d -> splitting %d/%d elements",
                iteration, nrefined_elements, unwarped_mesh.nelements)

        unwarped_mesh = refiner.refine(refine_flags)
        iteration += 1

    return unwarped_mesh
コード例 #12
0
ファイル: maxwell_sphere.py プロジェクト: inducer/pytential
def main():
    # cl.array.to_device(queue, numpy_array)
    from meshmode.mesh.io import generate_gmsh, FileSource
    from meshmode.mesh.generation import generate_icosphere
    from meshmode.mesh.refinement import Refiner
    mesh = generate_icosphere(1,target_order)

    refinement_increment = 1
    refiner = Refiner(mesh)
    for i in range(refinement_increment):
        flags = np.ones(mesh.nelements, dtype=bool)
        refiner.refine(flags)
        mesh = refiner.get_current_mesh()


    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    print("%d elements" % mesh.nelements)

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5*(bbox_min+bbox_max)
    bbox_size = max(bbox_max-bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
            cl_ctx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(density_discr, 4*target_order, qbx_order,
            fmm_order=False, fmm_backend="fmmlib")

    from pytential.symbolic.pde.maxwell import MuellerAugmentedMFIEOperator
    pde_op = MuellerAugmentedMFIEOperator(
            omega=1.0,
            epss=[1.0, 1.0],
            mus=[1.0, 1.0],
            )
    from pytential import bind, sym

    unk = pde_op.make_unknown("sigma")
    sym_operator = pde_op.operator(unk)
    sym_rhs = pde_op.rhs(
            sym.make_sym_vector("Einc", 3),
            sym.make_sym_vector("Hinc", 3))
    sym_repr = pde_op.representation(1, unk)

    if 1:
        expr = sym_repr
        print(sym.pretty(expr))

        print("#"*80)
        from pytential.target import PointsTarget

        tgt_points=np.zeros((3,1))
        tgt_points[0,0] = 100
        tgt_points[1,0] = -200
        tgt_points[2,0] = 300

        bound_op = bind((qbx, PointsTarget(tgt_points)), expr)
        print(bound_op.code)

    if 1:

        def green3e(x,y,z,source,strength,k):
        # electric field corresponding to dyadic green's function
        # due to monochromatic electric dipole located at "source".
        # "strength" is the the intensity of the dipole.
        #  E = (I + Hess)(exp(ikr)/r) dot (strength)
        #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout = np.exp(1j*k*rr)/rr
            evec = fout*strength
            qmat = np.zeros((3,3),dtype=np.complex128)

            qmat[0,0]=(2*dx**2-dy**2-dz**2)*(1-1j*k*rr)
            qmat[1,1]=(2*dy**2-dz**2-dx**2)*(1-1j*k*rr)
            qmat[2,2]=(2*dz**2-dx**2-dy**2)*(1-1j*k*rr)

            qmat[0,0]=qmat[0,0]+(-k**2*dx**2*rr**2)
            qmat[1,1]=qmat[1,1]+(-k**2*dy**2*rr**2)
            qmat[2,2]=qmat[2,2]+(-k**2*dz**2*rr**2)

            qmat[0,1]=(3-k**2*rr**2-3*1j*k*rr)*(dx*dy)
            qmat[1,2]=(3-k**2*rr**2-3*1j*k*rr)*(dy*dz)
            qmat[2,0]=(3-k**2*rr**2-3*1j*k*rr)*(dz*dx)

            qmat[1,0]=qmat[0,1]
            qmat[2,1]=qmat[1,2]
            qmat[0,2]=qmat[2,0]

            fout=np.exp(1j*k*rr)/rr**5/k**2

            fvec = fout*np.dot(qmat,strength)
            evec = evec + fvec
            return evec

        def green3m(x,y,z,source,strength,k):
        # magnetic field corresponding to dyadic green's function
        # due to monochromatic electric dipole located at "source".
        # "strength" is the the intensity of the dipole.
        #  H = curl((I + Hess)(exp(ikr)/r) dot (strength)) = 
        #  strength \cross \grad (exp(ikr)/r)
        #
            dx = x - source[0]
            dy = y - source[1]
            dz = z - source[2]
            rr = np.sqrt(dx**2 + dy**2 + dz**2)

            fout=(1-1j*k*rr)*np.exp(1j*k*rr)/rr**3
            fvec = np.zeros(3,dtype=np.complex128)
            fvec[0] = fout*dx
            fvec[1] = fout*dy
            fvec[2] = fout*dz

            hvec = np.cross(strength,fvec)

            return hvec

        def dipole3e(x,y,z,source,strength,k):
        #
        #  evalaute electric and magnetic field due
        #  to monochromatic electric dipole located at "source"
        #  with intensity "strength"

            evec = green3e(x,y,z,source,strength,k)
            evec = evec*1j*k
            hvec = green3m(x,y,z,source,strength,k)
#            print(hvec)
#            print(strength)
            return evec,hvec
            
        def dipole3m(x,y,z,source,strength,k):
        #
        #  evalaute electric and magnetic field due
        #  to monochromatic magnetic dipole located at "source"
        #  with intensity "strength"
            evec = green3m(x,y,z,source,strength,k)
            hvec = green3e(x,y,z,source,strength,k)
            hvec = -hvec*1j*k
            return evec,hvec
            

        def dipole3eall(x,y,z,sources,strengths,k):
            ns = len(strengths)
            evec = np.zeros(3,dtype=np.complex128)
            hvec = np.zeros(3,dtype=np.complex128)

            for i in range(ns):
                evect,hvect = dipole3e(x,y,z,sources[i],strengths[i],k)
                evec = evec + evect
                hvec = hvec + hvect

        nodes = density_discr.nodes().with_queue(queue).get()
        source = [0.01,-0.03,0.02]
#        source = cl.array.to_device(queue,np.zeros(3))
#        source[0] = 0.01
#        source[1] =-0.03
#        source[2] = 0.02
        strength = np.ones(3)
       
#        evec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))
#        hvec = cl.array.to_device(queue,np.zeros((3,len(nodes[0])),dtype=np.complex128))

        evec = np.zeros((3,len(nodes[0])),dtype=np.complex128)
        hvec = np.zeros((3,len(nodes[0])),dtype=np.complex128)
        for i in range(len(nodes[0])):
            evec[:,i],hvec[:,i] = dipole3e(nodes[0][i],nodes[1][i],nodes[2][i],source,strength,k)
        print(np.shape(hvec))
        print(type(evec))
        print(type(hvec))

        evec = cl.array.to_device(queue,evec)
        hvec = cl.array.to_device(queue,hvec)

        bvp_rhs = bind(qbx, sym_rhs)(queue,Einc=evec,Hinc=hvec)
        print(np.shape(bvp_rhs))
        print(type(bvp_rhs))
#        print(bvp_rhs)
        1/-1

        bound_op = bind(qbx, sym_operator)

        from pytential.solve import gmres
        if 1:
            gmres_result = gmres(
                bound_op.scipy_op(queue, "sigma", dtype=np.complex128, k=k),
                bvp_rhs, tol=1e-8, progress=True,
                stall_iterations=0,
                hard_failure=True)

            sigma = gmres_result.solution

        fld_at_tgt = bind((qbx, PointsTarget(tgt_points)), sym_repr)(queue,
        sigma=sigma,k=k)
        fld_at_tgt = np.array([
            fi.get() for fi in fld_at_tgt
            ])
        print(fld_at_tgt)
        fld_exact_e,fld_exact_h = dipole3e(tgt_points[0,0],tgt_points[1,0],tgt_points[2,0],source,strength,k)
        print(fld_exact_e)
        print(fld_exact_h)
        1/0

    # }}}

    #mlab.figure(bgcolor=(1, 1, 1))
    if 1:
        from meshmode.discretization.visualization import make_visualizer
        bdry_vis = make_visualizer(queue, density_discr, target_order)

        bdry_normals = bind(density_discr, sym.normal(3))(queue)\
                .as_vector(dtype=object)

        bdry_vis.write_vtk_file("source.vtu", [
            ("sigma", sigma),
            ("bdry_normals", bdry_normals),
            ])

        fplot = FieldPlotter(bbox_center, extent=2*bbox_size, npoints=(150, 150, 1))

        qbx_stick_out = qbx.copy(target_stick_out_factor=0.1)
        from pytential.target import PointsTarget
        from pytential.qbx import QBXTargetAssociationFailedException

        rho_sym = sym.var("rho")

        try:
            fld_in_vol = bind(
                    (qbx_stick_out, PointsTarget(fplot.points)),
                    sym.make_obj_array([
                        sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None),
                        sym.d_dx(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        sym.d_dy(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        sym.d_dz(3, sym.S(pde_op.kernel, rho_sym, k=sym.var("k"),
                            qbx_forced_limit=None)),
                        ])
                    )(queue, jt=jt, rho=rho, k=k)
        except QBXTargetAssociationFailedException as e:
            fplot.write_vtk_file(
                    "failed-targets.vts",
                    [
                        ("failed_targets", e.failed_target_flags.get(queue))
                        ])
            raise

        fld_in_vol = sym.make_obj_array(
            [fiv.get() for fiv in fld_in_vol])

        #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        fplot.write_vtk_file(
                "potential.vts",
                [
                    ("potential", fld_in_vol[0]),
                    ("grad", fld_in_vol[1:]),
                    ]
                )
コード例 #13
0
def refine_and_generate_chart_function(mesh, filename, function):
    from time import clock
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    print("NELEMENTS: ", mesh.nelements)
    #print mesh
    for i in range(len(mesh.groups[0].vertex_indices[0])):
        for k in range(len(mesh.vertices)):
            print(mesh.vertices[k, i])

    #check_nodal_adj_against_geometry(mesh);
    r = Refiner(mesh)
    #random.seed(0)
    #times = 3
    num_elements = []
    time_t = []
    #nelements = mesh.nelements
    while True:
        print("NELS:", mesh.nelements)
        #flags = get_corner_flags(mesh)
        flags = get_function_flags(mesh, function)
        nels = 0
        for i in flags:
            if i:
                nels += 1
        if nels == 0:
            break
        print("LKJASLFKJALKASF:", nels)
        num_elements.append(nels)
        #flags = get_corner_flags(mesh)
        beg = clock()
        mesh = r.refine(flags)
        end = clock()
        time_taken = end - beg
        time_t.append(time_taken)
        #if nelements == mesh.nelements:
        #break
        #nelements = mesh.nelements
        #from meshmode.mesh.visualization import draw_2d_mesh
        #draw_2d_mesh(mesh, True, True, True, fill=None)
        #import matplotlib.pyplot as pt
        #pt.show()

        #poss_flags = np.zeros(len(mesh.groups[0].vertex_indices))
        #for i in range(0, len(flags)):
        #    poss_flags[i] = flags[i]
        #for i in range(len(flags), len(poss_flags)):
        #    poss_flags[i] = 1

    import matplotlib.pyplot as pt
    pt.xlabel('Number of elements being refined')
    pt.ylabel('Time taken')
    pt.plot(num_elements, time_t, "o")
    pt.savefig(filename, format='pdf')
    pt.clf()
    print('DONE REFINING')
    '''
    flags = np.zeros(len(mesh.groups[0].vertex_indices))
    flags[0] = 1
    flags[1] = 1
    mesh = r.refine(flags)
    flags = np.zeros(len(mesh.groups[0].vertex_indices))
    flags[0] = 1
    flags[1] = 1
    flags[2] = 1
    mesh = r.refine(flags)
    '''
    #check_nodal_adj_against_geometry(mesh)
    #r.print_rays(70)
    #r.print_rays(117)
    #r.print_hanging_elements(10)
    #r.print_hanging_elements(117)
    #r.print_hanging_elements(757)
    #from meshmode.mesh.visualization import draw_2d_mesh
    #draw_2d_mesh(mesh, False, False, False, fill=None)
    #import matplotlib.pyplot as pt
    #pt.show()

    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            PolynomialWarpAndBlendGroupFactory
    discr = Discretization(cl_ctx, mesh,
                           PolynomialWarpAndBlendGroupFactory(order))
    from meshmode.discretization.visualization import make_visualizer
    vis = make_visualizer(queue, discr, order)
    remove_if_exists("connectivity2.vtu")
    remove_if_exists("geometry2.vtu")
    vis.write_vtk_file("geometry2.vtu", [
        ("f", discr.nodes()[0]),
    ])

    from meshmode.discretization.visualization import \
            write_nodal_adjacency_vtk_file

    write_nodal_adjacency_vtk_file("connectivity2.vtu", mesh)
コード例 #14
0
def test_sphere_eigenvalues(ctx_getter, mode_m, mode_n, qbx_order,
        fmm_backend):
    logging.basicConfig(level=logging.INFO)

    special = pytest.importorskip("scipy.special")

    cl_ctx = ctx_getter()
    queue = cl.CommandQueue(cl_ctx)

    target_order = 8

    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    from pytential.qbx import QBXLayerPotentialSource
    from pytools.convergence import EOCRecorder

    s_eoc_rec = EOCRecorder()
    d_eoc_rec = EOCRecorder()
    sp_eoc_rec = EOCRecorder()
    dp_eoc_rec = EOCRecorder()

    def rel_err(comp, ref):
        return (
                norm(density_discr, queue, comp - ref)
                / norm(density_discr, queue, ref))

    for nrefinements in [0, 1]:
        from meshmode.mesh.generation import generate_icosphere
        mesh = generate_icosphere(1, target_order)
        from meshmode.mesh.refinement import Refiner

        refiner = Refiner(mesh)
        for i in range(nrefinements):
            flags = np.ones(mesh.nelements, dtype=bool)
            refiner.refine(flags)
            mesh = refiner.get_current_mesh()

        pre_density_discr = Discretization(
                cl_ctx, mesh,
                InterpolatoryQuadratureSimplexGroupFactory(target_order))
        qbx, _ = QBXLayerPotentialSource(
                pre_density_discr, 4*target_order,
                qbx_order, fmm_order=6,
                fmm_backend=fmm_backend,
                ).with_refinement()

        density_discr = qbx.density_discr
        nodes = density_discr.nodes().with_queue(queue)
        r = cl.clmath.sqrt(nodes[0]**2 + nodes[1]**2 + nodes[2]**2)
        phi = cl.clmath.acos(nodes[2]/r)
        theta = cl.clmath.atan2(nodes[0], nodes[1])

        ymn = cl.array.to_device(queue,
                special.sph_harm(mode_m, mode_n, theta.get(), phi.get()))

        from sumpy.kernel import LaplaceKernel
        lap_knl = LaplaceKernel(3)

        # {{{ single layer

        s_sigma_op = bind(qbx, sym.S(lap_knl, sym.var("sigma")))
        s_sigma = s_sigma_op(queue=queue, sigma=ymn)
        s_eigval = 1/(2*mode_n + 1)
        s_eoc_rec.add_data_point(qbx.h_max, rel_err(s_sigma, s_eigval*ymn))

        # }}}

        # {{{ double layer

        d_sigma_op = bind(qbx, sym.D(lap_knl, sym.var("sigma")))
        d_sigma = d_sigma_op(queue=queue, sigma=ymn)
        d_eigval = -1/(2*(2*mode_n + 1))
        d_eoc_rec.add_data_point(qbx.h_max, rel_err(d_sigma, d_eigval*ymn))

        # }}}

        # {{{ S'

        sp_sigma_op = bind(qbx, sym.Sp(lap_knl, sym.var("sigma")))
        sp_sigma = sp_sigma_op(queue=queue, sigma=ymn)
        sp_eigval = -1/(2*(2*mode_n + 1))
        sp_eoc_rec.add_data_point(qbx.h_max, rel_err(sp_sigma, sp_eigval*ymn))

        # }}}

        # {{{ D'

        dp_sigma_op = bind(qbx, sym.Dp(lap_knl, sym.var("sigma")))
        dp_sigma = dp_sigma_op(queue=queue, sigma=ymn)
        dp_eigval = -(mode_n*(mode_n+1))/(2*mode_n + 1)
        dp_eoc_rec.add_data_point(qbx.h_max, rel_err(dp_sigma, dp_eigval*ymn))

        # }}}

    print("Errors for S:")
    print(s_eoc_rec)
    required_order = qbx_order + 1
    assert s_eoc_rec.order_estimate() > required_order - 1.5

    print("Errors for D:")
    print(d_eoc_rec)
    required_order = qbx_order
    assert d_eoc_rec.order_estimate() > required_order - 0.5

    print("Errors for S':")
    print(sp_eoc_rec)
    required_order = qbx_order
    assert sp_eoc_rec.order_estimate() > required_order - 1.5

    print("Errors for D':")
    print(dp_eoc_rec)
    required_order = qbx_order
    assert dp_eoc_rec.order_estimate() > required_order - 1.5
コード例 #15
0
def test_sphere_eigenvalues(ctx_factory, mode_m, mode_n, qbx_order,
                            fmm_backend):
    logging.basicConfig(level=logging.INFO)

    special = pytest.importorskip("scipy.special")

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    target_order = 8

    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory
    from pytential.qbx import QBXLayerPotentialSource
    from pytools.convergence import EOCRecorder

    s_eoc_rec = EOCRecorder()
    d_eoc_rec = EOCRecorder()
    sp_eoc_rec = EOCRecorder()
    dp_eoc_rec = EOCRecorder()

    def rel_err(comp, ref):
        return (norm(density_discr, comp - ref) / norm(density_discr, ref))

    for nrefinements in [0, 1]:
        from meshmode.mesh.generation import generate_icosphere
        mesh = generate_icosphere(1, target_order)
        from meshmode.mesh.refinement import Refiner

        refiner = Refiner(mesh)
        for i in range(nrefinements):
            flags = np.ones(mesh.nelements, dtype=bool)
            refiner.refine(flags)
            mesh = refiner.get_current_mesh()

        pre_density_discr = Discretization(
            actx, mesh,
            InterpolatoryQuadratureSimplexGroupFactory(target_order))
        qbx = QBXLayerPotentialSource(
            pre_density_discr,
            4 * target_order,
            qbx_order,
            fmm_order=6,
            fmm_backend=fmm_backend,
        )
        places = GeometryCollection(qbx)

        from meshmode.dof_array import flatten, unflatten, thaw

        density_discr = places.get_discretization(places.auto_source.geometry)
        nodes = thaw(actx, density_discr.nodes())
        r = actx.np.sqrt(nodes[0] * nodes[0] + nodes[1] * nodes[1] +
                         nodes[2] * nodes[2])
        phi = actx.np.arccos(nodes[2] / r)
        theta = actx.np.arctan2(nodes[0], nodes[1])

        ymn = unflatten(
            actx, density_discr,
            actx.from_numpy(
                special.sph_harm(mode_m, mode_n, actx.to_numpy(flatten(theta)),
                                 actx.to_numpy(flatten(phi)))))

        from sumpy.kernel import LaplaceKernel
        lap_knl = LaplaceKernel(3)

        # {{{ single layer

        s_sigma_op = bind(
            places, sym.S(lap_knl, sym.var("sigma"), qbx_forced_limit=+1))
        s_sigma = s_sigma_op(actx, sigma=ymn)
        s_eigval = 1 / (2 * mode_n + 1)

        h_max = bind(places, sym.h_max(qbx.ambient_dim))(actx)
        s_eoc_rec.add_data_point(h_max, rel_err(s_sigma, s_eigval * ymn))

        # }}}

        # {{{ double layer

        d_sigma_op = bind(
            places, sym.D(lap_knl, sym.var("sigma"), qbx_forced_limit="avg"))
        d_sigma = d_sigma_op(actx, sigma=ymn)
        d_eigval = -1 / (2 * (2 * mode_n + 1))
        d_eoc_rec.add_data_point(h_max, rel_err(d_sigma, d_eigval * ymn))

        # }}}

        # {{{ S'

        sp_sigma_op = bind(
            places, sym.Sp(lap_knl, sym.var("sigma"), qbx_forced_limit="avg"))
        sp_sigma = sp_sigma_op(actx, sigma=ymn)
        sp_eigval = -1 / (2 * (2 * mode_n + 1))

        sp_eoc_rec.add_data_point(h_max, rel_err(sp_sigma, sp_eigval * ymn))

        # }}}

        # {{{ D'

        dp_sigma_op = bind(
            places, sym.Dp(lap_knl, sym.var("sigma"), qbx_forced_limit="avg"))
        dp_sigma = dp_sigma_op(actx, sigma=ymn)
        dp_eigval = -(mode_n * (mode_n + 1)) / (2 * mode_n + 1)

        dp_eoc_rec.add_data_point(h_max, rel_err(dp_sigma, dp_eigval * ymn))

        # }}}

    print("Errors for S:")
    print(s_eoc_rec)
    required_order = qbx_order + 1
    assert s_eoc_rec.order_estimate() > required_order - 1.5

    print("Errors for D:")
    print(d_eoc_rec)
    required_order = qbx_order
    assert d_eoc_rec.order_estimate() > required_order - 0.5

    print("Errors for S':")
    print(sp_eoc_rec)
    required_order = qbx_order
    assert sp_eoc_rec.order_estimate() > required_order - 1.5

    print("Errors for D':")
    print(dp_eoc_rec)
    required_order = qbx_order
    assert dp_eoc_rec.order_estimate() > required_order - 1.5
コード例 #16
0
ファイル: generation.py プロジェクト: benSepanski/meshmode
def warp_and_refine_until_resolved(unwarped_mesh_or_refiner, warp_callable,
                                   est_rel_interp_tolerance):
    """Given an original ("unwarped") :class:`meshmode.mesh.Mesh` and a
    warping function *warp_callable* that takes and returns a mesh and a
    tolerance to which the mesh should be resolved by the mapping polynomials,
    this function will iteratively refine the *unwarped_mesh* until relative
    interpolation error estimates on the warped version are smaller than
    *est_rel_interp_tolerance* on each element.

    :returns: The refined, unwarped mesh.

    .. versionadded:: 2018.1
    """
    from modepy.modes import simplex_onb
    from modepy.matrices import vandermonde
    from modepy.modal_decay import simplex_interp_error_coefficient_estimator_matrix
    from meshmode.mesh.refinement import Refiner, RefinerWithoutAdjacency

    if isinstance(unwarped_mesh_or_refiner,
                  (Refiner, RefinerWithoutAdjacency)):
        refiner = unwarped_mesh_or_refiner
        unwarped_mesh = refiner.get_current_mesh()
    else:
        unwarped_mesh = unwarped_mesh_or_refiner
        refiner = Refiner(unwarped_mesh)

    iteration = 0

    while True:
        refine_flags = np.zeros(unwarped_mesh.nelements, dtype=bool)

        warped_mesh = warp_callable(unwarped_mesh)

        # test whether there are invalid values in warped mesh
        if not np.isfinite(warped_mesh.vertices).all():
            raise FloatingPointError(
                "Warped mesh contains non-finite vertices "
                "(NaN or Inf)")

        for group in warped_mesh.groups:
            if not np.isfinite(group.nodes).all():
                raise FloatingPointError(
                    "Warped mesh contains non-finite nodes "
                    "(NaN or Inf)")

        for egrp in warped_mesh.groups:
            dim, nunit_nodes = egrp.unit_nodes.shape

            interp_err_est_mat = simplex_interp_error_coefficient_estimator_matrix(
                egrp.unit_nodes,
                egrp.order,
                n_tail_orders=1 if warped_mesh.dim > 1 else 2)

            vdm_inv = la.inv(
                vandermonde(simplex_onb(dim, egrp.order), egrp.unit_nodes))

            mapping_coeffs = np.einsum("ij,dej->dei", vdm_inv, egrp.nodes)
            mapping_norm_2 = np.sqrt(np.sum(mapping_coeffs**2, axis=-1))

            interp_error_coeffs = np.einsum("ij,dej->dei", interp_err_est_mat,
                                            egrp.nodes)
            interp_error_norm_2 = np.sqrt(
                np.sum(interp_error_coeffs**2, axis=-1))

            # max over dimensions
            est_rel_interp_error = np.max(interp_error_norm_2 / mapping_norm_2,
                                          axis=0)

            refine_flags[
                    egrp.element_nr_base:
                    egrp.element_nr_base+egrp.nelements] = \
                            est_rel_interp_error > est_rel_interp_tolerance

        nrefined_elements = np.sum(refine_flags.astype(np.int32))
        if nrefined_elements == 0:
            break

        logger.info(
            "warp_and_refine_until_resolved: "
            "iteration %d -> splitting %d/%d elements", iteration,
            nrefined_elements, unwarped_mesh.nelements)

        unwarped_mesh = refiner.refine(refine_flags)
        iteration += 1

    return unwarped_mesh
コード例 #17
0
def refine_and_generate_chart_function(mesh, filename, function):
    from time import clock
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    print("NELEMENTS: ", mesh.nelements)
    #print mesh
    for i in range(len(mesh.groups[0].vertex_indices[0])):
        for k in range(len(mesh.vertices)):
            print(mesh.vertices[k, i])

    #check_nodal_adj_against_geometry(mesh);
    r = Refiner(mesh)
    #random.seed(0)
    #times = 3
    num_elements = []
    time_t = []
    #nelements = mesh.nelements
    while True:
        print("NELS:", mesh.nelements)
        #flags = get_corner_flags(mesh)
        flags = get_function_flags(mesh, function)
        nels = 0
        for i in flags:
            if i:
                nels += 1
        if nels == 0:
            break
        print("LKJASLFKJALKASF:", nels)
        num_elements.append(nels)
        #flags = get_corner_flags(mesh)
        beg = clock()
        mesh = r.refine(flags)
        end = clock()
        time_taken = end - beg
        time_t.append(time_taken)
        #if nelements == mesh.nelements:
            #break
        #nelements = mesh.nelements
        #from meshmode.mesh.visualization import draw_2d_mesh
        #draw_2d_mesh(mesh, True, True, True, fill=None)
        #import matplotlib.pyplot as pt
        #pt.show()

        #poss_flags = np.zeros(len(mesh.groups[0].vertex_indices))
        #for i in range(0, len(flags)):
        #    poss_flags[i] = flags[i]
        #for i in range(len(flags), len(poss_flags)):
        #    poss_flags[i] = 1

    import matplotlib.pyplot as pt
    pt.xlabel('Number of elements being refined')
    pt.ylabel('Time taken')
    pt.plot(num_elements, time_t, "o")
    pt.savefig(filename, format='pdf')
    pt.clf()
    print('DONE REFINING')
    '''
    flags = np.zeros(len(mesh.groups[0].vertex_indices))
    flags[0] = 1
    flags[1] = 1
    mesh = r.refine(flags)
    flags = np.zeros(len(mesh.groups[0].vertex_indices))
    flags[0] = 1
    flags[1] = 1
    flags[2] = 1
    mesh = r.refine(flags)
    '''
    #check_nodal_adj_against_geometry(mesh)
    #r.print_rays(70)
    #r.print_rays(117)
    #r.print_hanging_elements(10)
    #r.print_hanging_elements(117)
    #r.print_hanging_elements(757)
    #from meshmode.mesh.visualization import draw_2d_mesh
    #draw_2d_mesh(mesh, False, False, False, fill=None)
    #import matplotlib.pyplot as pt
    #pt.show()

    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            PolynomialWarpAndBlendGroupFactory
    discr = Discretization(
            cl_ctx, mesh, PolynomialWarpAndBlendGroupFactory(order))
    from meshmode.discretization.visualization import make_visualizer
    vis = make_visualizer(queue, discr, order)
    remove_if_exists("connectivity2.vtu")
    remove_if_exists("geometry2.vtu")
    vis.write_vtk_file("geometry2.vtu", [
        ("f", discr.nodes()[0]),
        ])

    from meshmode.discretization.visualization import \
            write_nodal_adjacency_vtk_file

    write_nodal_adjacency_vtk_file("connectivity2.vtu",
            mesh)