コード例 #1
0
import numpy as np

from mesostat.metric.metric import MetricCalculator

nChannel = 5
nTrial = 20
nTime = 100

data = np.random.randint(0, 4, (nChannel, nTrial, nTime)).astype(int)

mc = MetricCalculator(serial=False, nCore=4)
mc.set_data(data, 'prs')

settings_estimator = {'pid_estimator': 'TartuPID', 'lags_pid': [0, 0]}

rez = mc.metric3D('BivariatePID',
                  '',
                  metricSettings={
                      'settings_estimator': settings_estimator,
                      'parallelSrc3D': [1, 2, 3],
                      'trg': 4
                  })

print(rez.shape)
print(rez[:, :, 0])
print("Appended root directory", rootpath)

from mesostat.metric.metric import MetricCalculator
from lib.gallerosalas.data_fc_db_raw import DataFCDatabase
from lib.analysis.triplet_compute.datasweep import multiprocess_mouse_trgsweep


# tmp_path = root_path_data if 'root_path_data' in locals() else "./"
params = {}
# params['root_path_data'] = '/home/alfomi/data/yasirdata_raw'
params['root_path_data'] = '/media/alyosha/Data/TE_data/yasirdata_raw'
# params['root_path_data'] = gui_fpath('h5path', './')

dataDB = DataFCDatabase(params)
h5outname = 'pr2_gallerosalas_timesweep_all_df.h5'
mc = MetricCalculator(serial=True, verbose=False) #, nCore=4)

# Sweep over following parameters
argSweepDict = {
    'mousename': dataDB.mice,  # ['mvg_4']
    # 'intervName': dataDB.get_interval_names(),
    'datatype': ['bn_trial', 'bn_session'],
    'trialType': ['None', 'Hit', 'CR']
}

# Exclude following parameter combinations
exclQueryLst = [
    # {'datatype': 'bn_trial', 'intervName': 'PRE'},   # Pre-trial interval not meaningful for bn_trial
    # {'mousename' : 'mou_6', 'intervName': 'REW'}     # No reward recorded for mouse 6
]
コード例 #3
0
varSweep = [(p, d, s) for p in ["incr", "random"]
            for d in ["linear", "circular"] for s in ["matching", "shifted"]]
nSweep = len(varSweep)

########################
# Figures
########################

psFigs = PhaseSpaceFigures(nSweep)
metricFigs = MetricFigures(["values", "lags", "p-values"], nSweep, algNames)

########################
# Sweep loop
########################

mc = MetricCalculator(nCore=4)

performanceTimes = []

for iSweep, var in enumerate(varSweep):
    predictName, dataName, shiftName = var
    data = generate_data(nTrial, nTime, predictName == "incr",
                         dataName == "linear", shiftName == "shifted")
    dataLabel = predictName + "_" + dataName + "_" + shiftName
    psFigs.addrow(data, dataLabel)
    metricFigs.set_row_label(iSweep, dataLabel)

    for iAlg, (algName, metricName, estimator,
               cmi) in enumerate(zip(algNames, *algDict.values())):
        # Get label
        resultLabel = dataLabel + "_" + algName
コード例 #4
0
def parallel(nCore):
    task(MetricCalculator(serial=False, nCore=nCore))
コード例 #5
0
def serial():
    task(MetricCalculator(serial=True))
コード例 #6
0
    def test_shapes(self):
        # Create dummy data
        nProcess = 12
        nSample = 200
        nRepetition = 100

        dataShape = (nProcess, nSample, nRepetition)
        dataDimOrd = "psr"
        data = np.random.uniform(0, 1, dataShape)

        # Settings for some of the metrics
        metricSettings = {
            "max_lag": 3,
            "lag": 5,
            "hist": 3,
            "parallelTrg": True,
            'min_lag_sources': 1,
            'max_lag_sources': 1,
            'cmi_estimator': "JidtGaussianCMI"
        }

        mc = MetricCalculator(serial=False)
        mc.set_data(data, dataDimOrd, timeWindow=None, zscoreDim="sr")

        # Test if result of the metric has expected shape, based on source and target axis
        def testAxis(metrics,
                     srcDimOrder,
                     trgDimOrder,
                     extraAxis=None,
                     metricSettings=None):
            trgShape = tuple(
                [dataShape[srcDimOrder.index(e)] for e in trgDimOrder])

            for iMetric, metricName in enumerate(metrics):
                print(metricName, trgDimOrder)
                trgShapeEff = trgShape if extraAxis is None else trgShape + extraAxis[
                    iMetric]
                rez = mc.metric3D(metricName,
                                  trgDimOrder,
                                  metricSettings=metricSettings)
                self.assertEqual(rez.shape,
                                 trgShapeEff,
                                 msg="Error in " + metricName)

        # Test if metrics throw ValueError exception
        def testRaises(metrics, trgDimOrder):
            for iMetric, metricName in enumerate(metrics):
                print(metricName, trgDimOrder)
                with self.assertRaises(ValueError):
                    mc.metric3D(metricName,
                                trgDimOrder,
                                metricSettings=metricSettings)

        ########################################
        # TEST 1.1: Shape: Full projections
        ########################################

        # "mean":                 self._nanmean,
        # "std":                  self._nanstd,
        # "autocorr":             autocorr_3D,
        # "corr":                 corr_3D,
        # "crosscorr":            cross_corr_3D,
        # "BivariateMI":          lambda data, settings : self._TE("BivariateMI", data, settings),
        # "BivariateTE":          lambda data, settings: self._TE("BivariateTE", data, settings),
        # "MultivariateMI":       lambda data, settings: self._TE("MultivariateMI", data, settings),
        # "MultivariateTE":       lambda data, settings: self._TE("MultivariateTE", data, settings),
        # "autocorr_d1":          autocorr_d1_3D,
        # "ar1_coeff":            autoregression.ar1_coeff,
        # "ar1_testerr":          autoregression.ar1_testerr,
        # "ar_testerr":           autoregression.ar_testerr,
        # "mar1_coeff":           autoregression.mar1_coeff,
        # "mar1_testerr":         autoregression.mar1_testerr,
        # "mar_testerr":          autoregression.mar_testerr,
        # "mar_inp_testerr":      autoregression.mar_inp_testerr,
        # "avgcorr":              avg_corr_3D,
        # "avg_entropy":          average_entropy_3D,
        # "avg_PI":               average_predictive_info,
        # "ord_mean":             sequence.temporal_mean_3D,
        # "ord_moments":          sequence.temporal_moments_3D,
        # "ord_binary":           sequence.bivariate_binary_orderability_3D,
        # "ord_binary_avg":       sequence.avg_bivariate_binary_orderability_3D,
        # "ord_student":          sequence.bivariate_student_orderability_3D,
        # "ord_student_avg":      sequence.avg_bivariate_student_orderability_3D,
        # "temporal_basis":       stretch_basis_projection,
        # "generic_metric":       self._generic_metric
        # "avg_entropy_1D" :      self._avg_entropy_1D,
        # "avg_PI_1D":            self._avg_PI_1D,
        # "avg_TC_1D":            self._avg_TC,
        # "avg_TPI_1D":           self._avg_TPI,

        # # Scalar
        # metricScalarFull = [
        #     "mean", "std",
        #     "autocorr_d1",
        #     "ar1_coeff", "ar1_testerr", "ar_testerr", "mar1_testerr", "mar_testerr",
        #     "avgcorr",
        #     "avg_entropy", "avg_PI", "avg_entropy_1D", "avg_PI_1D", "avg_TC_1D", "avg_TPI_1D",
        #     "ord_mean", "ord_binary_avg",
        #     ]
        # for metricName in metricScalarFull:
        #     print("Testing full projection for", metricName)
        #     rez = mc.metric3D(metricName, "", metricSettings=metricSettings)
        #     self.assertTrue(np.isscalar(rez))
        #     self.assertTrue(~np.isnan(rez))

        # Vector
        metricVectorFull = [
            "autocorr", "corr", "crosscorr", "BivariateMI", "BivariateTE",
            "MultivariateMI", "MultivariateTE", "ord_binary", "temporal_basis"
        ]
        extraAxisVectorFull = [(nSample, ), (nProcess, nProcess),
                               (nProcess, nProcess), (3, nProcess, nProcess),
                               (3, nProcess, nProcess),
                               (3, nProcess, nProcess),
                               (3, nProcess, nProcess), (nProcess, nProcess),
                               (5, )]
        testAxis(metricVectorFull,
                 dataDimOrd,
                 "",
                 extraAxis=extraAxisVectorFull,
                 metricSettings=metricSettings)
コード例 #7
0
# import standard libraries
import numpy as np
import matplotlib.pyplot as plt

from mesostat.metric.metric import MetricCalculator
from mesostat.visualization.mpl_matrix import plot_matrix

mc = MetricCalculator(serial=True, verbose=True)
'''
   Test 1:
     Generate random data, and shift it by fixed steps for each channel
     Expected outcomes:
     * If shift <= max_delay, corr ~ 1, delay = shift
     * If shift > max_delay, corr ~ 0, delay = rand
     * Delay is the same for all diagonals, because we compare essentially the same data, both cycled by the same amount
'''

nNode = 5
nData = 1000
data = np.zeros((nNode, nData))
data[0] = np.random.normal(0, 1, nData)
for i in range(1, nNode):
    data[i] = np.hstack((data[i - 1][1:], data[i - 1][0]))

mc.set_data(data, 'ps')
sweepSettings = {"lag": [1, 2]}
rezCorr = mc.metric3D("crosscorr",
                      "",
                      metricSettings={"estimator": "corr"},
                      sweepSettings=sweepSettings)
rezSpr = mc.metric3D("crosscorr",