コード例 #1
0
ファイル: __init__.py プロジェクト: murliramki/message_ix
def make_dantzig(mp, solve=False, multi_year=False, **solve_opts):
    """Return an :class:`message_ix.Scenario` for Dantzig's canning problem.

    Parameters
    ----------
    mp : ixmp.Platform
        Platform on which to create the scenario.
    solve : bool, optional
        If True, the scenario is solved.
    multi_year : bool, optional
        If True, the scenario has years 1963--1965 inclusive. Otherwise, the
        scenario has the single year 1963.
    """
    # add custom units and region for timeseries data
    mp.add_unit('USD/case')
    mp.add_unit('case')
    mp.add_region('DantzigLand', 'country')

    # initialize a new (empty) instance of an `ixmp.Scenario`
    scen = Scenario(
        mp,
        model=SCENARIO['dantzig']['model'],
        scenario='multi-year' if multi_year else 'standard',
        annotation="Dantzig's canning problem as a MESSAGE-scheme Scenario",
        version='new')

    # Sets
    # NB commit() is refused if technology and year are not given
    t = ['canning_plant', 'transport_from_seattle', 'transport_from_san-diego']
    sets = {
        'technology': t,
        'node': 'seattle san-diego new-york chicago topeka'.split(),
        'mode': 'production to_new-york to_chicago to_topeka'.split(),
        'level': 'supply consumption'.split(),
        'commodity': ['cases'],
    }

    for name, values in sets.items():
        scen.add_set(name, values)

    scen.add_horizon({'year': [1962, 1963], 'firstmodelyear': 1963})

    # Parameters
    par = {}

    demand = {
        'node': 'new-york chicago topeka'.split(),
        'value': [325, 300, 275]
    }
    par['demand'] = make_df(pd.DataFrame.from_dict(demand),
                            commodity='cases',
                            level='consumption',
                            time='year',
                            unit='case',
                            year=1963)

    b_a_u = {'node_loc': ['seattle', 'san-diego'], 'value': [350, 600]}
    par['bound_activity_up'] = make_df(pd.DataFrame.from_dict(b_a_u),
                                       mode='production',
                                       technology='canning_plant',
                                       time='year',
                                       unit='case',
                                       year_act=1963)
    par['ref_activity'] = par['bound_activity_up'].copy()

    input = pd.DataFrame(
        [
            ['to_new-york', 'seattle', 'seattle', t[1]],
            ['to_chicago', 'seattle', 'seattle', t[1]],
            ['to_topeka', 'seattle', 'seattle', t[1]],
            ['to_new-york', 'san-diego', 'san-diego', t[2]],
            ['to_chicago', 'san-diego', 'san-diego', t[2]],
            ['to_topeka', 'san-diego', 'san-diego', t[2]],
        ],
        columns=['mode', 'node_loc', 'node_origin', 'technology'])
    par['input'] = make_df(input,
                           commodity='cases',
                           level='supply',
                           time='year',
                           time_origin='year',
                           unit='case',
                           value=1,
                           year_act=1963,
                           year_vtg=1963)

    output = pd.DataFrame(
        [
            ['supply', 'production', 'seattle', 'seattle', t[0]],
            ['supply', 'production', 'san-diego', 'san-diego', t[0]],
            ['consumption', 'to_new-york', 'new-york', 'seattle', t[1]],
            ['consumption', 'to_chicago', 'chicago', 'seattle', t[1]],
            ['consumption', 'to_topeka', 'topeka', 'seattle', t[1]],
            ['consumption', 'to_new-york', 'new-york', 'san-diego', t[2]],
            ['consumption', 'to_chicago', 'chicago', 'san-diego', t[2]],
            ['consumption', 'to_topeka', 'topeka', 'san-diego', t[2]],
        ],
        columns=['level', 'mode', 'node_dest', 'node_loc', 'technology'])
    par['output'] = make_df(output,
                            commodity='cases',
                            time='year',
                            time_dest='year',
                            unit='case',
                            value=1,
                            year_act=1963,
                            year_vtg=1963)

    # Variable cost: cost per kilometre × distance (neither parametrized
    # explicitly)
    var_cost = pd.DataFrame(
        [
            ['to_new-york', 'seattle', 'transport_from_seattle', 0.225],
            ['to_chicago', 'seattle', 'transport_from_seattle', 0.153],
            ['to_topeka', 'seattle', 'transport_from_seattle', 0.162],
            ['to_new-york', 'san-diego', 'transport_from_san-diego', 0.225],
            ['to_chicago', 'san-diego', 'transport_from_san-diego', 0.162],
            ['to_topeka', 'san-diego', 'transport_from_san-diego', 0.126],
        ],
        columns=['mode', 'node_loc', 'technology', 'value'])
    par['var_cost'] = make_df(var_cost,
                              time='year',
                              unit='USD/case',
                              year_act=1963,
                              year_vtg=1963)

    for name, value in par.items():
        scen.add_par(name, value)

    if multi_year:
        scen.add_set('year', [1964, 1965])
        scen.add_par('technical_lifetime', ['seattle', 'canning_plant', 1964],
                     3, 'y')

    if solve:
        # Always read one equation. Used by test_core.test_year_int.
        scen.init_equ('COMMODITY_BALANCE_GT',
                      ['node', 'commodity', 'level', 'year', 'time'])
        solve_opts['equ_list'] = solve_opts.get('equ_list', []) \
            + ['COMMODITY_BALANCE_GT']

    scen.commit('Created a MESSAGE-scheme version of the transport problem.')
    scen.set_as_default()

    if solve:
        scen.solve(**solve_opts)

    scen.check_out(timeseries_only=True)
    scen.add_timeseries(HIST_DF, meta=True)
    scen.add_timeseries(INP_DF)
    scen.commit("Import Dantzig's transport problem for testing.")

    return scen
コード例 #2
0
ファイル: __init__.py プロジェクト: murliramki/message_ix
def make_westeros(mp, emissions=False, solve=False):
    """Return an :class:`message_ix.Scenario` for the Westeros model.

    This is the same model used in the ``westeros_baseline.ipynb`` tutorial.

    Parameters
    ----------
    mp : ixmp.Platform
        Platform on which to create the scenario.
    emissions : bool, optional
        If True, the ``emissions_factor`` parameter is also populated for CO2.
    solve : bool, optional
        If True, the scenario is solved.
    """
    scen = Scenario(mp, version='new', **SCENARIO['westeros'])

    # Sets

    history = [690]
    model_horizon = [700, 710, 720]
    scen.add_horizon({
        'year': history + model_horizon,
        'firstmodelyear': model_horizon[0]
    })

    country = 'Westeros'
    scen.add_spatial_sets({'country': country})

    sets = {
        'technology': 'coal_ppl wind_ppl grid bulb'.split(),
        'mode': ['standard'],
        'level': 'secondary final useful'.split(),
        'commodity': 'electricity light'.split(),
    }

    for name, values in sets.items():
        scen.add_set(name, values)

    # Parameters — copy & paste from the tutorial notebook

    gdp_profile = pd.Series([1., 1.5, 1.9],
                            index=pd.Index(model_horizon, name='Time'))
    demand_per_year = 40 * 12 * 1000 / 8760
    light_demand = pd.DataFrame({
        'node': country,
        'commodity': 'light',
        'level': 'useful',
        'year': model_horizon,
        'time': 'year',
        'value': (100 * gdp_profile).round(),
        'unit': 'GWa',
    })
    scen.add_par("demand", light_demand)

    year_df = scen.vintage_and_active_years()
    vintage_years, act_years = year_df['year_vtg'], year_df['year_act']

    base = {
        'node_loc': country,
        'year_vtg': vintage_years,
        'year_act': act_years,
        'mode': 'standard',
        'time': 'year',
        'unit': '-',
    }

    base_input = make_df(base, node_origin=country, time_origin='year')
    base_output = make_df(base, node_dest=country, time_dest='year')

    bulb_out = make_df(base_output,
                       technology='bulb',
                       commodity='light',
                       level='useful',
                       value=1.0)
    scen.add_par('output', bulb_out)

    bulb_in = make_df(base_input,
                      technology='bulb',
                      commodity='electricity',
                      level='final',
                      value=1.0)
    scen.add_par('input', bulb_in)

    grid_efficiency = 0.9
    grid_out = make_df(base_output,
                       technology='grid',
                       commodity='electricity',
                       level='final',
                       value=grid_efficiency)
    scen.add_par('output', grid_out)

    grid_in = make_df(base_input,
                      technology='grid',
                      commodity='electricity',
                      level='secondary',
                      value=1.0)
    scen.add_par('input', grid_in)

    coal_out = make_df(base_output,
                       technology='coal_ppl',
                       commodity='electricity',
                       level='secondary',
                       value=1.)
    scen.add_par('output', coal_out)

    wind_out = make_df(base_output,
                       technology='wind_ppl',
                       commodity='electricity',
                       level='secondary',
                       value=1.)
    scen.add_par('output', wind_out)

    base_capacity_factor = {
        'node_loc': country,
        'year_vtg': vintage_years,
        'year_act': act_years,
        'time': 'year',
        'unit': '-',
    }

    capacity_factor = {
        'coal_ppl': 1,
        'wind_ppl': 1,
        'bulb': 1,
    }

    for tec, val in capacity_factor.items():
        df = make_df(base_capacity_factor, technology=tec, value=val)
        scen.add_par('capacity_factor', df)

    base_technical_lifetime = {
        'node_loc': country,
        'year_vtg': model_horizon,
        'unit': 'y',
    }

    lifetime = {
        'coal_ppl': 20,
        'wind_ppl': 20,
        'bulb': 1,
    }

    for tec, val in lifetime.items():
        df = make_df(base_technical_lifetime, technology=tec, value=val)
        scen.add_par('technical_lifetime', df)

    base_growth = {
        'node_loc': country,
        'year_act': model_horizon,
        'time': 'year',
        'unit': '-',
    }

    growth_technologies = [
        "coal_ppl",
        "wind_ppl",
    ]

    for tec in growth_technologies:
        df = make_df(base_growth, technology=tec, value=0.1)
        scen.add_par('growth_activity_up', df)

    historic_demand = 0.85 * demand_per_year
    historic_generation = historic_demand / grid_efficiency
    coal_fraction = 0.6

    base_capacity = {
        'node_loc': country,
        'year_vtg': history,
        'unit': 'GWa',
    }

    base_activity = {
        'node_loc': country,
        'year_act': history,
        'mode': 'standard',
        'time': 'year',
        'unit': 'GWa',
    }

    old_activity = {
        'coal_ppl': coal_fraction * historic_generation,
        'wind_ppl': (1 - coal_fraction) * historic_generation,
    }

    for tec, val in old_activity.items():
        df = make_df(base_activity, technology=tec, value=val)
        scen.add_par('historical_activity', df)

    act_to_cap = {
        # 20 year lifetime
        'coal_ppl': 1 / 10 / capacity_factor['coal_ppl'] / 2,
        'wind_ppl': 1 / 10 / capacity_factor['wind_ppl'] / 2,
    }

    for tec in act_to_cap:
        value = old_activity[tec] * act_to_cap[tec]
        df = make_df(base_capacity, technology=tec, value=value)
        scen.add_par('historical_new_capacity', df)

    rate = [0.05] * len(model_horizon)
    unit = ['-'] * len(model_horizon)
    scen.add_par("interestrate", model_horizon, rate, unit)

    base_inv_cost = {
        'node_loc': country,
        'year_vtg': model_horizon,
        'unit': 'USD/GWa',
    }

    # in $ / kW
    costs = {
        'coal_ppl': 500,
        'wind_ppl': 1500,
        'bulb': 5,
    }

    for tec, val in costs.items():
        df = make_df(base_inv_cost, technology=tec, value=val)
        scen.add_par('inv_cost', df)

    base_fix_cost = {
        'node_loc': country,
        'year_vtg': vintage_years,
        'year_act': act_years,
        'unit': 'USD/GWa',
    }

    # in $ / kW
    costs = {
        'coal_ppl': 30,
        'wind_ppl': 10,
    }

    for tec, val in costs.items():
        df = make_df(base_fix_cost, technology=tec, value=val)
        scen.add_par('fix_cost', df)

    base_var_cost = {
        'node_loc': country,
        'year_vtg': vintage_years,
        'year_act': act_years,
        'mode': 'standard',
        'time': 'year',
        'unit': 'USD/GWa',
    }

    # in $ / MWh
    costs = {
        'coal_ppl': 30,
        'grid': 50,
    }

    for tec, val in costs.items():
        df = make_df(base_var_cost, technology=tec, value=val)
        scen.add_par('var_cost', df)

    scen.commit('basic model of Westerosi electrification')
    scen.set_as_default()

    if emissions:
        scen.check_out()

        # Introduce the emission species CO2 and the emission category GHG
        scen.add_set('emission', 'CO2')
        scen.add_cat('emission', 'GHG', 'CO2')

        # we now add CO2 emissions to the coal powerplant
        base_emission_factor = {
            'node_loc': country,
            'year_vtg': vintage_years,
            'year_act': act_years,
            'mode': 'standard',
            'unit': 'USD/GWa',
        }

        emission_factor = make_df(base_emission_factor,
                                  technology='coal_ppl',
                                  emission='CO2',
                                  value=100.)
        scen.add_par('emission_factor', emission_factor)

        scen.commit('Added emissions sets/params to Westeros model.')

    if solve:
        scen.solve()

    return scen
コード例 #3
0
def add_reliability_flexibility_parameter(data, model_par, raw_data):
    rel_flex = raw_data['base_input']['rel_and_flex']
    model = {}
    rating_bin = []
    reliability_factor = []
    flexibility_factor = []

    rating_bin_unit = data['units']['rating_bin']['unit']
    reliability_factor_unit = data['units']['reliability_factor']['unit']
    flexibility_factor_unit = data['units']['flexibility_factor']['unit']

    output = model_par['output']

    for i in rel_flex.index:
        node = rel_flex.at[i, 'node']
        technology = rel_flex.at[i, 'technology']
        mode = data['technology'][technology]['mode']
        commodity = rel_flex.at[i, 'commodity']
        level = rel_flex.at[i, 'level']
        time = rel_flex.at[i, 'time']
        rating = rel_flex.at[i, 'rating']

        logger.debug(f'Create reliability flexibility parameters '
                     f'for {technology} in {node}')

        rating_bin_value = rel_flex.at[i, 'rating_bin']
        reliability_factor_value = rel_flex.at[i, 'reliability_factor']
        flexibility_factor_value = rel_flex.at[i, 'flexibility_factor']

        model_years = output[
            output.technology == technology].year_act.unique().tolist()
        active_years = output[
            output.technology == technology].year_act.tolist()
        vintage_years = output[
            output.technology == technology].year_vtg.tolist()

        base_par = pd.DataFrame({
            'node': node,
            'technology': technology,
            'year_act': model_years,
            'commodity': commodity,
            'level': level,
            'time': time,
            'rating': rating})

        rating_bin.append(
            make_df(base_par, value=rating_bin_value, unit=rating_bin_unit))

        reliability_factor.append(
            make_df(base_par, value=reliability_factor_value,
                    unit=reliability_factor_unit))

        base_flex = pd.DataFrame({
            'node_loc': node,
            'technology': technology,
            'year_act': active_years,
            'year_vtg': vintage_years,
            'commodity': commodity,
            'level': level,
            'mode': mode,
            'time': time,
            'rating': rating})

        flexibility_factor.append(
            make_df(base_flex, value=flexibility_factor_value,
                    unit=flexibility_factor_unit))

    rating_bin = pd.concat(rating_bin, sort=False, ignore_index=True)
    rating_bin['year_act'] = rating_bin['year_act'].astype(int)
    model['rating_bin'] = rating_bin

    reliability_factor = pd.concat(reliability_factor, sort=False,
                                   ignore_index=True)
    reliability_factor['year_act'] = reliability_factor['year_act'].astype(int)
    model['reliability_factor'] = reliability_factor

    flexibility_factor = pd.concat(flexibility_factor, sort=False,
                                   ignore_index=True)
    flexibility_factor['year_act'] = flexibility_factor['year_act'].astype(int)
    flexibility_factor['year_vtg'] = flexibility_factor['year_vtg'].astype(int)
    model['flexibility_factor'] = flexibility_factor
    return model
コード例 #4
0
def test_make_df():
    base = {'foo': 'bar'}
    exp = pd.DataFrame({'foo': 'bar', 'baz': [42, 42]})
    obs = utils.make_df(base, baz=[42, 42])
    pdt.assert_frame_equal(obs, exp)
コード例 #5
0
# We use add_par for adding data to a MESSAGEix parameter
scenario.add_par("demand", light_demand)

year_df = scenario.vintage_and_active_years()
vintage_years, act_years = year_df['year_vtg'], year_df['year_act']

base = {
    'node_loc': country,
    'year_vtg': vintage_years,
    'year_act': act_years,
    'mode': 'standard',
    'time': 'year',
    'unit': '-',
}

base_input = make_df(base, node_origin=country, time_origin='year')
base_output = make_df(base, node_dest=country, time_dest='year')

bulb_out = make_df(base_output,
                   technology='bulb',
                   commodity='light',
                   level='useful',
                   value=1.0)
scenario.add_par('output', bulb_out)

bulb_in = make_df(base_input,
                  technology='bulb',
                  commodity='electricity',
                  level='final',
                  value=1.0)
scenario.add_par('input', bulb_in)
コード例 #6
0
def add_reliability_flexibility_parameter(
        data: Data, model_par: ModelPar,
        raw_data: RawData) -> Dict[str, pd.DataFrame]:
    rel_flex = raw_data['base_input']['rel_and_flex']
    model = {}
    _rating_bin = []
    _reliability_factor = []
    _flexibility_factor = []
    rating_bin_unit = data['units']['rating_bin']['unit']
    reliability_factor_unit = data['units']['reliability_factor']['unit']
    flexibility_factor_unit = data['units']['flexibility_factor']['unit']

    output: pd.DataFrame = model_par['output'].copy()

    for i in rel_flex.index:
        node = rel_flex.at[i, 'node']
        technology = rel_flex.at[i, 'technology']
        mode = data['technology'][technology]['mode']
        commodity = rel_flex.at[i, 'commodity']
        level = rel_flex.at[i, 'level']
        time = rel_flex.at[i, 'time']
        rating = rel_flex.at[i, 'rating']

        logger.debug(
            f'Create reliability flexibility parameters for {technology} in {node}'
        )

        rating_bin_value = rel_flex.at[i, 'rating_bin']
        reliability_factor_value = rel_flex.at[i, 'reliability_factor']
        flexibility_factor_value = rel_flex.at[i, 'flexibility_factor']

        _output_technology = output[output['technology'] == technology]
        _model_years = list(_output_technology['year_act'].unique())
        _active_years = list(_output_technology['year_act'])
        _vintage_years = list(_output_technology['year_vtg'])

        base_par = pd.DataFrame({
            'node': node,
            'technology': technology,
            'year_act': _model_years,
            'commodity': commodity,
            'level': level,
            'time': time,
            'rating': rating
        })

        _rating_bin.append(
            make_df(base_par, value=rating_bin_value, unit=rating_bin_unit))

        _reliability_factor.append(
            make_df(base_par,
                    value=reliability_factor_value,
                    unit=reliability_factor_unit))

        base_flex = pd.DataFrame({
            'node_loc': node,
            'technology': technology,
            'year_act': _active_years,
            'year_vtg': _vintage_years,
            'commodity': commodity,
            'level': level,
            'mode': mode,
            'time': time,
            'rating': rating
        })

        _flexibility_factor.append(
            make_df(base_flex,
                    value=flexibility_factor_value,
                    unit=flexibility_factor_unit))

    rating_bin = pd.concat(_rating_bin, sort=False, ignore_index=True)
    rating_bin['year_act'] = rating_bin['year_act'].astype(int)
    model['rating_bin'] = rating_bin

    reliability_factor = pd.concat(_reliability_factor,
                                   sort=False,
                                   ignore_index=True)
    reliability_factor['year_act'] = reliability_factor['year_act'].astype(int)
    model['reliability_factor'] = reliability_factor

    flexibility_factor = pd.concat(_flexibility_factor,
                                   sort=False,
                                   ignore_index=True)
    flexibility_factor['year_act'] = flexibility_factor['year_act'].astype(int)
    flexibility_factor['year_vtg'] = flexibility_factor['year_vtg'].astype(int)
    model['flexibility_factor'] = flexibility_factor
    return model