def _fc_layer(self, embedding): """The fully connected layer to be finetuned.""" with tf.variable_scope('fc_finetune', reuse=tf.AUTO_REUSE): logits = functional_classifiers.linear_classifier( embedding, self.logit_dim, self.cosine_classifier, self.cosine_logits_multiplier, self.use_weight_norm) return logits
def forward_pass_fc(self, embeddings): """Passes the provided embeddings through the fc layer to get the logits. Args: embeddings: A Tensor of the penultimate layer activations as computed by BaselineLearner.forward_pass. Returns: The fc layer activations. """ with tf.variable_scope('fc', reuse=tf.AUTO_REUSE): # Always maps to a space whose dimensionality is the number of classes # at meta-training time. logits = functional_classifiers.linear_classifier( embeddings, self.logit_dim, self.cosine_classifier, self.cosine_logits_multiplier, self.use_weight_norm) return logits