import plotly.graph_objects as go import plotly.figure_factory as ff import constants from meta_db.db.DBHelper import DBHelper db = DBHelper() regressors = pd.DataFrame(db.get_all_regressors_preperformance(), columns=[ "name", "score", "max_error", "mean_absolute_error", "mean_squared_error", "r2_score", "median_absolute_error", "classifier", "preprocesses" ]) regressors_nopp = pd.DataFrame(db.get_all_regressors(), columns=db.regressor_columns()).drop("id", axis=1) if not os.path.exists("analysis/plots"): os.makedirs("analysis/plots") if not os.path.exists("analysis/plots/meta_preperformance"): os.makedirs("analysis/plots/meta_preperformance") translator = { "svm": "SVM", "logistic_regression": "LG", "linear_discriminant": "LD", "kneighbors": "kNN", "decision_tree": "DT", "gaussian_nb": "GNB",
import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.io as pio import plotly.express as px import plotly.graph_objects as go import plotly.figure_factory as ff import constants from meta_db.db.DBHelper import DBHelper db = DBHelper() regressors = pd.DataFrame(db.get_all_regressors_preperformance(), columns = ["name", "score", "max_error", "mean_absolute_error", "mean_squared_error", "r2_score", "median_absolute_error", "classifier", "preprocesses"] ) regressors_nopp = pd.DataFrame(db.get_all_regressors(), columns = db.regressor_columns()).drop("id", axis = 1) if not os.path.exists("analysis/plots"): os.makedirs("analysis/plots") if not os.path.exists("analysis/plots/meta_preperformance"): os.makedirs("analysis/plots/meta_preperformance") translator = { "svm": "SVM", "logistic_regression": "LG", "linear_discriminant": "LD", "kneighbors": "kNN", "decision_tree": "DT", "gaussian_nb": "GNB", "random_forest": "RF", "gradient_boosting": "GB",