コード例 #1
0
             entry_point="metabo.environment.metabo_gym:MetaBO",
             max_episode_steps=env_spec["T"],
             reward_threshold=None,
             kwargs=env_spec)

    # define evaluation run
    eval_spec = {
        "env_id": env_spec["env_id"],
        "env_seed_offset": 100,
        "policy": af,
        "logpath": logpath,
        "load_iter": load_iter,
        "deterministic": deterministic,
        "policy_specs": policy_specs,
        "savepath": savepath,
        "n_workers": n_workers,
        "n_episodes": n_episodes,
        "T": env_spec["T"],
    }

    # perform evaluation
    print("Evaluating {} on {}...".format(af, env_spec["env_id"]))
    eval_experiment(eval_spec)
    print("Done! Saved result in {}".format(savepath))
    print("**********************\n\n")

# plot (plot is saved to savepath)
print("Plotting...")
plot_results(path=savepath, logplot=True)
print("Done! Saved plot in {}".format(savepath))
コード例 #2
0
             entry_point="metabo.environment.metabo_gym:MetaBO",
             max_episode_steps=env_spec["T"],
             reward_threshold=None,
             kwargs=env_spec)

    # define evaluation run
    eval_spec = {
        "env_id": env_spec["env_id"],
        "env_seed_offset": 100,
        "policy": af,
        "logpath": logpath,
        "load_iter": load_iter,
        "deterministic": deterministic,
        "policy_specs": policy_specs,
        "savepath": savepath,
        "n_workers": n_workers,
        "n_episodes": n_episodes,
        "T": env_spec["T"],
    }

    # perform evaluation
    print("Evaluating {} on {}...".format(af, env_spec["env_id"]))
    eval_experiment(eval_spec)
    print("Done! Saved result in {}".format(savepath))
    print("**********************\n\n")

# plot (plot is saved to savepath)
print("Plotting...")
plot_results(path=savepath, logplot=False)
print("Done! Saved plot in {}".format(savepath))