entry_point="metabo.environment.metabo_gym:MetaBO", max_episode_steps=env_spec["T"], reward_threshold=None, kwargs=env_spec) # define evaluation run eval_spec = { "env_id": env_spec["env_id"], "env_seed_offset": 100, "policy": af, "logpath": logpath, "load_iter": load_iter, "deterministic": deterministic, "policy_specs": policy_specs, "savepath": savepath, "n_workers": n_workers, "n_episodes": n_episodes, "T": env_spec["T"], } # perform evaluation print("Evaluating {} on {}...".format(af, env_spec["env_id"])) eval_experiment(eval_spec) print("Done! Saved result in {}".format(savepath)) print("**********************\n\n") # plot (plot is saved to savepath) print("Plotting...") plot_results(path=savepath, logplot=True) print("Done! Saved plot in {}".format(savepath))
entry_point="metabo.environment.metabo_gym:MetaBO", max_episode_steps=env_spec["T"], reward_threshold=None, kwargs=env_spec) # define evaluation run eval_spec = { "env_id": env_spec["env_id"], "env_seed_offset": 100, "policy": af, "logpath": logpath, "load_iter": load_iter, "deterministic": deterministic, "policy_specs": policy_specs, "savepath": savepath, "n_workers": n_workers, "n_episodes": n_episodes, "T": env_spec["T"], } # perform evaluation print("Evaluating {} on {}...".format(af, env_spec["env_id"])) eval_experiment(eval_spec) print("Done! Saved result in {}".format(savepath)) print("**********************\n\n") # plot (plot is saved to savepath) print("Plotting...") plot_results(path=savepath, logplot=False) print("Done! Saved plot in {}".format(savepath))