def get_default_args(**kw): default_dict = { "precision": fixed_point(32, 0), "target": VHDLBackend(), "output_file": "mult_array.vhd", "entity_name": "mult_array", "language": VHDL_Code, "Method": ReductionMethod.Wallace_4to2, "pipelined": False, "dummy_mode": False, "booth_mode": False, "method": ReductionMethod.Wallace, "op_expr": multiplication_descriptor_parser("FS9.0xFS13.0"), "stage_height_limit": [None], "passes": [ ("beforepipelining:size_datapath"), ("beforepipelining:rtl_legalize"), ("beforepipelining:unify_pipeline_stages"), ], } default_dict.update(kw) return DefaultEntityArgTemplate(**default_dict)
def get_default_args(**kw): default_mapping = { "extra_digit": 0, "sign_magnitude": False, "pipelined": False } default_mapping.update(kw) return DefaultEntityArgTemplate(**default_mapping)
def get_default_args(**kw): root_arg = { "entity_name": "new_entity_pass", "output_file": "ut_entity_pass.c", "width": 32, "precision": ML_Int32 } root_arg.update(kw) return DefaultEntityArgTemplate(**root_arg)
def get_default_args(width=32, entity_name="my_lzc", **kw): return DefaultEntityArgTemplate(precision=ML_Int32, debug_flag=False, target=vhdl_backend.VHDLBackend(), output_file="my_lzc.vhd", entity_name=entity_name, language=VHDL_Code, width=width, **kw)
def get_default_args(**kw): default_dict = { "precision": ML_Binary32, "target": VHDLBackend(), "output_file": "my_fp_div.vhd", "entity_name": "my_fp_div", "language": VHDL_Code, "pipelined": False, } default_dict.update(kw) return DefaultEntityArgTemplate(**default_dict)
def get_default_args(**kw): default_dict = { "precision": ML_Int32, "debug_flag": False, "target": VHDLBackend(), "output_file": "ut_rtl_report.vhd", "entity_name": "ut_rtl_report", "language": VHDL_Code, } default_dict.update(kw) return DefaultEntityArgTemplate(**default_dict)
def get_default_args(**kw): default_arg_map = { "precision": HdlVirtualFormat(ML_Binary32), "pipelined": False, "output_file": "fp_adder.vhd", "entity_name": "fp_adder", "language": VHDL_Code, "passes": [("beforecodegen:size_datapath")], } default_arg_map.update(**kw) return DefaultEntityArgTemplate(**default_arg_map)
def get_default_args(width=32, **kw): """ generate default argument template """ return DefaultEntityArgTemplate( precision=ML_Int32, debug_flag=False, target=VHDLBackend(), output_file="ut_fixed_point_position.vhd", entity_name="ut_fixed_point_position", language=VHDL_Code, width=width, passes=[("beforecodegen:size_datapath")], )
def get_default_args(width=32, **kw): """ generate default argument template """ return DefaultEntityArgTemplate( precision=ML_Int32, debug_flag=False, target=VHDLBackend(), output_file="my_adapative_entity.vhd", entity_name="my_adaptative_entity", language=VHDL_Code, width=width, passes=[("beforecodegen:size_datapath"), ("beforecodegen:rtl_legalize"), ("beforecodegen:dump")], )
def get_default_args(**kw): default_arg_map = { "io_formats": { "scale": HdlVirtualFormat(ML_Binary32), "quantized_input": FIX32, "offset_input": FIX32, "result": FIX32 }, "pipelined": False, "output_file": "dequantizer.vhd", "entity_name": "dequantizer", "language": VHDL_Code, "passes": ["beforecodegen:size_datapath", "beforecodegen:rtl_legalize"], } default_arg_map.update(**kw) return DefaultEntityArgTemplate(**default_arg_map)
def get_default_args(width=32, **kw): """ generate default argument template """ return DefaultEntityArgTemplate( precision=ML_Int32, debug_flag=False, target=VHDLBackend(), output_file="ut_sub_component.vhd", entity_name="ut_sub_component", language=VHDL_Code, width=width, passes=[ ("beforepipelining:size_datapath"), ("beforepipelining:rtl_legalize"), ("beforepipelining:unify_pipeline_stages"), ], )
def get_default_args(**kw): """ generate default argument structure for BipartiteApprox """ default_dict = { "target": VHDLBackend(), "output_file": "my_bipartite_approx.vhd", "entity_name": "my_bipartie_approx", "language": VHDL_Code, "function": lambda x: 1.0 / x, "interval": Interval(1, 2), "pipelined": False, "precision": fixed_point(1, 15, signed=False), "disable_sub_testing": False, "disable_sv_testing": False, "alpha": 6, "beta": 5, "gamma": 5, "guard_bits": 3, "passes": [ "beforepipelining:size_datapath", "beforepipelining:rtl_legalize", "beforepipelining:unify_pipeline_stages" ], } default_dict.update(kw) return DefaultEntityArgTemplate(**default_dict)