def test_benchmark_rl2(self): # pylint: disable=no-self-use """Compare benchmarks between metarl and baselines.""" # test set has a higher max_obs_dim env_obs_dim = [env().observation_space.shape[0] for (_, env) in ML45_ENVS['test'].items()] max_obs_dim = max(env_obs_dim) env_id = 'ML45' ML_train_envs = [ TaskIdWrapper(NormalizedRewardEnv(RL2Env(env(*ML45_ARGS['train'][task]['args'], **ML45_ARGS['train'][task]['kwargs']), max_obs_dim)), task_id=task_id, task_name=task) for (task_id, (task, env)) in enumerate(ML45_ENVS['train'].items()) ] tasks = task_sampler.EnvPoolSampler(ML_train_envs) tasks.grow_pool(hyper_parameters['meta_batch_size']) envs = tasks.sample(hyper_parameters['meta_batch_size']) env = envs[0]() timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f') benchmark_dir = './data/local/benchmarks/rl2/%s/' % timestamp result_json = {} # Start main loop seeds = random.sample(range(100), hyper_parameters['n_trials']) task_dir = osp.join(benchmark_dir, env_id) metarl_tf_csvs = [] for trial in range(hyper_parameters['n_trials']): seed = seeds[trial] trial_dir = task_dir + '/trial_%d_seed_%d' % (trial + 1, seed) metarl_tf_dir = trial_dir + '/metarl' with tf.Graph().as_default(): env.reset() metarl_tf_csv = run_metarl(env, envs, tasks, seed, metarl_tf_dir) metarl_tf_csvs.append(metarl_tf_csv) with open(osp.join(metarl_tf_dir, 'parameters.txt'), 'w') as outfile: hyper_parameters_copy = copy.deepcopy(hyper_parameters) hyper_parameters_copy['sampler_cls'] = str(hyper_parameters_copy['sampler_cls']) json.dump(hyper_parameters_copy, outfile) g_x = 'TotalEnvSteps' g_ys = [ 'Evaluation/AverageReturn', 'Evaluation/SuccessRate', ] for g_y in g_ys: plt_file = osp.join(benchmark_dir, '{}_benchmark_{}.png'.format(env_id, g_y.replace('/', '-'))) Rh.relplot(g_csvs=metarl_tf_csvs, b_csvs=None, g_x=g_x, g_y=g_y, g_z='MetaRL', b_x=None, b_y=None, b_z='ProMP', trials=hyper_parameters['n_trials'], seeds=seeds, plt_file=plt_file, env_id=env_id, x_label=g_x, y_label=g_y)
def test_benchmark_pearl(self): """Run benchmarks for metarl PEARL.""" ML_train_envs = [ TaskIdWrapper(MetaRLEnv( IgnoreDoneWrapper( normalize( env(*ML10_ARGS['train'][task]['args'], **ML10_ARGS['train'][task]['kwargs'])))), task_id=task_id, task_name=task) for (task_id, (task, env)) in enumerate(ML10_ENVS['train'].items()) ] ML_test_envs = [ TaskIdWrapper(MetaRLEnv( IgnoreDoneWrapper( normalize( env(*ML10_ARGS['test'][task]['args'], **ML10_ARGS['test'][task]['kwargs'])))), task_id=task_id, task_name=task) for (task_id, (task, env)) in enumerate(ML10_ENVS['test'].items()) ] env_sampler = EnvPoolSampler(ML_train_envs) env = env_sampler.sample(params['num_train_tasks']) test_env_sampler = EnvPoolSampler(ML_test_envs) test_env = test_env_sampler.sample(params['num_test_tasks']) env_id = 'ML10' timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f') benchmark_dir = osp.join(os.getcwd(), 'data', 'local', 'benchmarks', 'pearl', timestamp) result_json = {} seeds = random.sample(range(100), params['n_trials']) task_dir = osp.join(benchmark_dir, env_id) plt_file = osp.join(benchmark_dir, '{}_benchmark.png'.format(env_id)) metarl_csvs = [] for trial in range(params['n_trials']): seed = seeds[trial] trial_dir = task_dir + '/trial_%d_seed_%d' % (trial + 1, seed) metarl_dir = trial_dir + '/metarl' metarl_csv = run_metarl(env, test_env, seed, metarl_dir) metarl_csvs.append(metarl_csv) env.close() benchmark_helper.plot_average_over_trials( [metarl_csvs], ys=['Test/Average/SuccessRate'], plt_file=plt_file, env_id=env_id, x_label='TotalEnvSteps', y_label='Test/Average/SuccessRate', names=['metarl_pearl'], ) factor_val = params['meta_batch_size'] * params['max_path_length'] result_json[env_id] = benchmark_helper.create_json( [metarl_csvs], seeds=seeds, trials=params['n_trials'], xs=['TotalEnvSteps'], ys=['Test/Average/SuccessRate'], factors=[factor_val], names=['metarl_pearl']) Rh.write_file(result_json, 'PEARL')
def run_metarl(env, envs, tasks, seed, log_dir): """Create metarl Tensorflow PPO model and training. Args: env (dict): Environment of the task. seed (int): Random positive integer for the trial. log_dir (str): Log dir path. Returns: str: Path to output csv file """ deterministic.set_seed(seed) snapshot_config = SnapshotConfig(snapshot_dir=log_dir, snapshot_mode='gap', snapshot_gap=10) with LocalTFRunner(snapshot_config) as runner: policy = GaussianGRUPolicy( hidden_dims=hyper_parameters['hidden_sizes'], env_spec=env.spec, state_include_action=False) baseline = MetaRLLinearFeatureBaseline(env_spec=env.spec) inner_algo = RL2PPO( env_spec=env.spec, policy=policy, baseline=baseline, max_path_length=hyper_parameters['max_path_length'] * hyper_parameters['rollout_per_task'], discount=hyper_parameters['discount'], gae_lambda=hyper_parameters['gae_lambda'], lr_clip_range=hyper_parameters['lr_clip_range'], optimizer_args=dict( max_epochs=hyper_parameters['optimizer_max_epochs'], tf_optimizer_args=dict( learning_rate=hyper_parameters['optimizer_lr'], ), ) ) # Need to pass this if meta_batch_size < num_of_tasks task_names = list(ML45_ENVS['train'].keys()) algo = RL2( policy=policy, inner_algo=inner_algo, max_path_length=hyper_parameters['max_path_length'], meta_batch_size=hyper_parameters['meta_batch_size'], task_sampler=tasks, task_names=None if hyper_parameters['meta_batch_size'] >= len(task_names) else task_names) # Set up logger since we are not using run_experiment tabular_log_file = osp.join(log_dir, 'progress.csv') text_log_file = osp.join(log_dir, 'debug.log') dowel_logger.add_output(dowel.TextOutput(text_log_file)) dowel_logger.add_output(dowel.CsvOutput(tabular_log_file)) dowel_logger.add_output(dowel.StdOutput()) dowel_logger.add_output(dowel.TensorBoardOutput(log_dir)) runner.setup( algo, envs, sampler_cls=hyper_parameters['sampler_cls'], n_workers=hyper_parameters['meta_batch_size'], worker_class=RL2Worker, sampler_args=dict( use_all_workers=hyper_parameters['use_all_workers']), worker_args=dict( n_paths_per_trial=hyper_parameters['rollout_per_task'])) # meta evaluator env_obs_dim = [env().observation_space.shape[0] for (_, env) in ML45_ENVS['test'].items()] max_obs_dim = max(env_obs_dim) ML_test_envs = [ TaskIdWrapper(NormalizedRewardEnv(RL2Env(env(*ML45_ARGS['test'][task]['args'], **ML45_ARGS['test'][task]['kwargs']), max_obs_dim)), task_id=task_id, task_name=task) for (task_id, (task, env)) in enumerate(ML45_ENVS['test'].items()) ] test_tasks = task_sampler.EnvPoolSampler(ML_test_envs) test_tasks.grow_pool(hyper_parameters['n_test_tasks']) test_task_names = list(ML45_ENVS['test'].keys()) runner.setup_meta_evaluator(test_task_sampler=test_tasks, n_exploration_traj=hyper_parameters['rollout_per_task'], n_test_rollouts=hyper_parameters['test_rollout_per_task'], n_test_tasks=hyper_parameters['n_test_tasks'], n_workers=hyper_parameters['n_test_tasks'], test_task_names=None if hyper_parameters['n_test_tasks'] >= len(test_task_names) else test_task_names) runner.train(n_epochs=hyper_parameters['n_itr'], batch_size=hyper_parameters['meta_batch_size'] * hyper_parameters['rollout_per_task'] * hyper_parameters['max_path_length']) dowel_logger.remove_all() return tabular_log_file
def run_task(snapshot_config, *_): """Set up environment and algorithm and run the task. Args: snapshot_config (metarl.experiment.SnapshotConfig): The snapshot configuration used by LocalRunner to create the snapshotter. If None, it will create one with default settings. _ : Unused parameters """ # create multi-task environment and sample tasks ML_train_envs = [ TaskIdWrapper(MetaRLEnv( normalize( env(*ML45_ARGS['train'][task]['args'], **ML45_ARGS['train'][task]['kwargs']))), task_id=task_id, task_name=task, pad=True) for (task_id, (task, env)) in enumerate(ML45_ENVS['train'].items()) ] ML_test_envs = [ TaskIdWrapper(MetaRLEnv( normalize( env(*ML45_ARGS['test'][task]['args'], **ML45_ARGS['test'][task]['kwargs']))), task_id=task_id, task_name=task, pad=True) for (task_id, (task, env)) in enumerate(ML45_ENVS['test'].items()) ] train_task_names = ML45.get_train_tasks()._task_names test_task_names = ML45.get_test_tasks()._task_names env_sampler = EnvPoolSampler(ML_train_envs) env = env_sampler.sample(params['num_train_tasks']) test_env_sampler = EnvPoolSampler(ML_test_envs) test_env = test_env_sampler.sample(params['num_test_tasks']) runner = LocalRunner(snapshot_config) obs_dim = max( int(np.prod(env[i]().observation_space.shape)) for i in range(params['num_train_tasks'])) action_dim = int(np.prod(env[0]().action_space.shape)) reward_dim = 1 # instantiate networks encoder_in_dim = obs_dim + action_dim + reward_dim encoder_out_dim = params['latent_size'] * 2 net_size = params['net_size'] context_encoder = MLPEncoder(input_dim=encoder_in_dim, output_dim=encoder_out_dim, hidden_sizes=[200, 200, 200]) space_a = akro.Box(low=-1, high=1, shape=(obs_dim + params['latent_size'], ), dtype=np.float32) space_b = akro.Box(low=-1, high=1, shape=(action_dim, ), dtype=np.float32) augmented_env = EnvSpec(space_a, space_b) qf1 = ContinuousMLPQFunction(env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size]) qf2 = ContinuousMLPQFunction(env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size]) obs_space = akro.Box(low=-1, high=1, shape=(obs_dim, ), dtype=np.float32) action_space = akro.Box(low=-1, high=1, shape=(params['latent_size'], ), dtype=np.float32) vf_env = EnvSpec(obs_space, action_space) vf = ContinuousMLPQFunction(env_spec=vf_env, hidden_sizes=[net_size, net_size, net_size]) policy = TanhGaussianMLPPolicy2( env_spec=augmented_env, hidden_sizes=[net_size, net_size, net_size]) context_conditioned_policy = ContextConditionedPolicy( latent_dim=params['latent_size'], context_encoder=context_encoder, policy=policy, use_ib=params['use_information_bottleneck'], use_next_obs=params['use_next_obs_in_context'], ) pearlsac = PEARLSAC( env=env, test_env=test_env, policy=context_conditioned_policy, qf1=qf1, qf2=qf2, vf=vf, num_train_tasks=params['num_train_tasks'], num_test_tasks=params['num_test_tasks'], latent_dim=params['latent_size'], meta_batch_size=params['meta_batch_size'], num_steps_per_epoch=params['num_steps_per_epoch'], num_initial_steps=params['num_initial_steps'], num_tasks_sample=params['num_tasks_sample'], num_steps_prior=params['num_steps_prior'], num_extra_rl_steps_posterior=params['num_extra_rl_steps_posterior'], num_evals=params['num_evals'], num_steps_per_eval=params['num_steps_per_eval'], batch_size=params['batch_size'], embedding_batch_size=params['embedding_batch_size'], embedding_mini_batch_size=params['embedding_mini_batch_size'], max_path_length=params['max_path_length'], reward_scale=params['reward_scale'], train_task_names=train_task_names, test_task_names=test_task_names, ) tu.set_gpu_mode(params['use_gpu'], gpu_id=0) if params['use_gpu']: pearlsac.to() runner.setup(algo=pearlsac, env=env, sampler_cls=PEARLSampler, sampler_args=dict(max_path_length=params['max_path_length'])) runner.train(n_epochs=params['num_epochs'], batch_size=params['batch_size'])