def hx_plain(): """Computes product of Hessian(f) and vector v. Returns: tf.Tensor: Symbolic result. """ with tf.name_scope('hx_plain', values=[constraint_grads, params, xs]): with tf.name_scope('hx_function', values=[constraint_grads, xs]): hx_f = tf.reduce_sum( tf.stack([ tf.reduce_sum(g * x) for g, x in zip(constraint_grads, xs) ])), hx_plain_splits = tf.gradients(hx_f, params, name='gradients_hx_plain') for idx, (hx, param) in enumerate(zip(hx_plain_splits, params)): if hx is None: hx_plain_splits[idx] = tf.zeros_like(param) return tensor_utils.flatten_tensor_variables( hx_plain_splits)
def get_opt_output(): """Helper function to construct graph. Returns: list[tf.Tensor]: Loss and gradient tensor. """ with tf.name_scope('get_opt_output', values=[loss, params]): flat_grad = tensor_utils.flatten_tensor_variables( tf.gradients(loss, params)) return [ tf.cast(loss, tf.float64), tf.cast(flat_grad, tf.float64) ]
def get_opt_output(): """Helper function to construct graph. Returns: list[tf.Tensor]: Penalized loss and gradient tensor. """ with tf.name_scope('get_opt_output'): grads = tf.gradients(penalized_loss, params) for idx, (grad, param) in enumerate(zip(grads, params)): if grad is None: grads[idx] = tf.zeros_like(param) flat_grad = tensor_utils.flatten_tensor_variables(grads) return [ tf.cast(penalized_loss, tf.float64), tf.cast(flat_grad, tf.float64), ]
def update_opt( self, loss, target, leq_constraint, inputs, extra_inputs=None, name=None, constraint_name='constraint', ): """Update the optimizer. Build the functions for computing loss, gradient, and the constraint value. Args: loss (tf.Tensor): Symbolic expression for the loss function. target (metarl.tf.policies.Policy): A parameterized object to optimize over. leq_constraint (tuple[tf.Tensor, float]): A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon. inputs (list(tf.Tenosr)): A list of symbolic variables as inputs, which could be subsampled if needed. It is assumed that the first dimension of these inputs should correspond to the number of data points. extra_inputs (list[tf.Tenosr]): A list of symbolic variables as extra inputs which should not be subsampled. name (str): Name to be passed to tf.name_scope. constraint_name (str): A constraint name for prupose of logging and variable names. """ params = target.get_params() ns_vals = [loss, target, leq_constraint, inputs, extra_inputs, params] with tf.name_scope(name, 'ConjugateGradientOptimizer', ns_vals): inputs = tuple(inputs) if extra_inputs is None: extra_inputs = tuple() else: extra_inputs = tuple(extra_inputs) constraint_term, constraint_value = leq_constraint with tf.name_scope('loss_gradients', values=[loss, params]): grads = tf.gradients(loss, xs=params) for idx, (grad, param) in enumerate(zip(grads, params)): if grad is None: grads[idx] = tf.zeros_like(param) flat_grad = tensor_utils.flatten_tensor_variables(grads) self._hvp_approach.update_hvp(f=constraint_term, target=target, inputs=inputs + extra_inputs, reg_coeff=self._reg_coeff, name='update_opt_' + constraint_name) self._target = target self._max_constraint_val = constraint_value self._constraint_name = constraint_name self._opt_fun = LazyDict( f_loss=lambda: tensor_utils.compile_function( inputs=inputs + extra_inputs, outputs=loss, log_name='f_loss', ), f_grad=lambda: tensor_utils.compile_function( inputs=inputs + extra_inputs, outputs=flat_grad, log_name='f_grad', ), f_constraint=lambda: tensor_utils.compile_function( inputs=inputs + extra_inputs, outputs=constraint_term, log_name='constraint', ), f_loss_constraint=lambda: tensor_utils.compile_function( inputs=inputs + extra_inputs, outputs=[loss, constraint_term], log_name='f_loss_constraint', ), )
def update_hvp(self, f, target, inputs, reg_coeff, name=None): """Build the symbolic graph to compute the Hessian-vector product. Args: f (tf.Tensor): The function whose Hessian needs to be computed. target (metarl.tf.policies.Policy): A parameterized object to optimize over. inputs (tuple[tf.Tensor]): The inputs for function f. reg_coeff (float): A small value so that A -> A + reg*I. name (str): Name to be used in tf.name_scope. """ self._target = target self._reg_coeff = reg_coeff params = target.get_params() with tf.name_scope(name, 'FiniteDifferenceHvp', [f, inputs, params, target]): constraint_grads = tf.gradients(f, xs=params, name='gradients_constraint') for idx, (grad, param) in enumerate(zip(constraint_grads, params)): if grad is None: constraint_grads[idx] = tf.zeros_like(param) flat_grad = tensor_utils.flatten_tensor_variables(constraint_grads) def f_hx_plain(*args): """Computes product of Hessian(f) and vector v. Args: args (tuple[numpy.ndarray]): Contains inputs of function f , and vector v. Returns: tf.Tensor: Symbolic result. """ with tf.name_scope('f_hx_plain', values=[inputs, self._target]): inputs_ = args[:len(inputs)] xs = args[len(inputs):] flat_xs = np.concatenate( [np.reshape(x, (-1, )) for x in xs]) param_val = self._target.get_param_values() eps = np.cast['float32']( self.base_eps / (np.linalg.norm(param_val) + 1e-8)) self._target.set_param_values(param_val + eps * flat_xs) flat_grad_dvplus = self._hvp_fun['f_grad'](*inputs_) self._target.set_param_values(param_val) if self.symmetric: self._target.set_param_values(param_val - eps * flat_xs) flat_grad_dvminus = self._hvp_fun['f_grad'](*inputs_) hx = (flat_grad_dvplus - flat_grad_dvminus) / (2 * eps) self._target.set_param_values(param_val) else: flat_grad = self._hvp_fun['f_grad'](*inputs_) hx = (flat_grad_dvplus - flat_grad) / eps return hx self._hvp_fun = LazyDict( f_grad=lambda: tensor_utils.compile_function( inputs=inputs, outputs=flat_grad, log_name='f_grad', ), f_hx_plain=lambda: f_hx_plain, )