コード例 #1
0
ファイル: plot.py プロジェクト: woodsouth/meteva
def roc_hfmc(hfmc, save_path=None, title="ROC图"):
    '''

    :param hfmc:
    :param save_path:
    :return:
    '''
    fig = plt.figure(figsize=(5.6, 5.6))
    far = [1]
    far.extend(pofd_hfmc(hfmc).tolist())
    far.append(0)
    pod = [1]
    pod.extend(pod_hfmc(hfmc).tolist())
    pod.append(0)
    far = np.array(far)
    pod = np.array(pod)
    if (far.size < 30):
        plt.plot(far, pod, color="blue", linewidth=2, marker=".", label="实际预报")
    else:
        plt.plot(far, pod, color="blue", linewidth=2, label="实际预报")
    plt.plot([0, 1], [0, 1], ":", color="k", linewidth=1, label="无技巧预报")
    plt.xlabel("空报率", fontsize=14)
    plt.ylabel("命中率", fontsize=14)
    plt.ylim(0.0, 1.0)
    plt.xlim(0.0, 1.0)
    plt.legend(loc=4, fontsize=14)
    plt.title(title, fontsize=14)
    plt.xticks(fontsize=14)
    plt.yticks(fontsize=14)
    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
        print("检验结果已以图片形式保存至" + save_path)
    plt.close()
コード例 #2
0
ファイル: score.py プロジェクト: zph2074/meteva
def roc_auc_hnh(hnh_array):
    '''

    :param hnh_array:
    :return:
    '''
    ngrade = hnh_array.shape[-2]
    total_grade_num = hnh_array[..., :, 0]
    observed_grade_num = hnh_array[..., :, 1]
    shape = list(total_grade_num.shape)
    shape.append(4)
    shape = tuple(shape)
    hfmc = np.zeros(shape)
    total_hap = np.sum(observed_grade_num, axis=-1)
    total_num = np.sum(total_grade_num, axis=-1)
    sum_axis = len(observed_grade_num.shape) - 1
    for i in range(ngrade):
        hfmc[..., i, 0] = np.sum(observed_grade_num[..., i:], axis=sum_axis)
        hfmc[..., i, 1] = np.sum(total_grade_num[..., i:],
                                 axis=sum_axis) - hfmc[..., i, 0]
        hfmc[..., i, 2] = total_hap - hfmc[..., i, 0]
        hfmc[..., i, 3] = total_num - (hfmc[..., i, 0] + hfmc[..., i, 1] +
                                       hfmc[..., i, 2])

    far = pofd_hfmc(hfmc)
    pod = pod_hfmc(hfmc)

    start1 = np.ones_like(total_num)
    end0 = np.zeros_like(total_num)
    auc = (start1 - far[..., 0]) * (start1 + pod[..., 0])
    for i in range(1, ngrade):
        auc += (far[..., i - 1] - far[..., i]) * (pod[..., i - 1] +
                                                  pod[..., i])
    auc += (far[..., -1] - end0) * (pod[..., -1])
    auc /= 2

    return auc
コード例 #3
0
ファイル: plot.py プロジェクト: alexanderhucheerful/meteva
def comprehensive_hnh(hnh_array,  member_list=None,vmax = None,log_y = False, save_path=None,show = False,dpi = 300, title="概率预报综合检验图"):
    '''

    :param th_array:
    :param save_path:
    :return:
    '''
    sup_fontsize = 10
    fig = plt.figure(figsize=(8, 5.6),dpi = dpi)
    grade_count = hnh_array.shape[-2]
    grade = 1 / grade_count
    if grade_count < 1:
        print('grade_count输入错误,不能小于1')
        return
    grade_list = np.arange(0, 1, grade).tolist()
    grade_list.append(1.1)
    shape = list(hnh_array.shape)
    new_th_array = hnh_array.reshape((-1, len(grade_list) - 1, 2))
    new_th_array_shape = new_th_array.shape
    label = []
    legend_num = new_th_array_shape[0]
    if member_list is None:
        if legend_num == 1:
            label.append('预报')
        else:
            for i in range(legend_num):
                label.append('预报' + str(i + 1))
    else:
        label.extend(member_list)
    color_list = meteva.base.tool.color_tools.get_color_list(legend_num)
    bar_width = 1.0 / (grade_count * (legend_num + 3))
    ymax = -9999
    mark_line_x = []
    mark_line_y = []
    for line in range(legend_num):
        total_grade_num = new_th_array[line, :, 0]
        observed_grade_num = new_th_array[line, :, 1]
        total_num = np.sum(total_grade_num)

        under = np.zeros_like(total_grade_num)
        under[:] = total_grade_num[:]
        under[total_grade_num == 0] = 1
        ob_rate = observed_grade_num / under
        ob_rate[total_grade_num == 0] = IV
        ob_rate_noIV = set_plot_IV(ob_rate)
        ob_rate[total_grade_num == 0] = np.nan
        index_iv = np.where(total_grade_num == 0)

        not_observed_grade_num = total_grade_num - observed_grade_num

        ngrade = len(total_grade_num)
        grade = 1 / ngrade
        x = np.arange(grade / 2, 1, grade)

        line_x = np.arange(0, 1.01, 0.1)
        prefect_line_y = np.arange(0, 1.01, 0.1)
        climate_line_y = np.ones_like(line_x) * np.sum(observed_grade_num) / total_num

        grid_plt = plt.GridSpec(6, 2)
        if line == 0:
            plt.suptitle(title,fontsize= sup_fontsize,y=0.95)
            plt.subplots_adjust(wspace=0.2, hspace=1)
            ax3 = plt.subplot(grid_plt[0:4, 1])
            ax4 = plt.subplot(grid_plt[4:, :])
            ax1 = plt.subplot(grid_plt[0:4, 0])
        ax1.plot(x, ob_rate_noIV, "--", linewidth=0.5, color="k")
        x_iv = x[index_iv[0]]
        ob_rate_noIV_iv = ob_rate_noIV[index_iv[0]]

        ax1.plot(x_iv, ob_rate_noIV_iv, "x", color='k',label = None)
        if line == 0:
            ax1.plot(line_x, prefect_line_y, '--', label="完美", color="k")
            ax1.plot(line_x, climate_line_y, ':', label="无技巧", color="k")
        ax1.plot(x, ob_rate, marker=".", markersize="10", color=color_list[line],label = None)

        x1 = x + (line -legend_num / 2 + 0.5) * bar_width
        total_hap = np.sum(observed_grade_num)
        hfmc = np.zeros((len(total_grade_num), 4))
        for i in range(ngrade):
            hfmc[i, 0] = np.sum(observed_grade_num[i:])
            hfmc[i, 1] = np.sum(total_grade_num[i:]) - hfmc[i, 0]
            hfmc[i, 2] = total_hap - hfmc[i, 0]
            hfmc[i, 3] = total_num - (hfmc[i, 0] + hfmc[i, 1] + hfmc[i, 2])

        far = [1]
        far.extend(pofd_hfmc(hfmc).tolist())
        far.append(0)
        pod = [1]
        pod.extend(pod_hfmc(hfmc).tolist())
        pod.append(0)
        far = np.array(far)
        pod = np.array(pod)

        if line == 0:
            ax3.plot([0, 1], [0, 1], ":", color="k", linewidth=1, label="无技巧")
        ax3.plot(far, pod, color=color_list[line], linewidth=2, label=label[line])
        #ax4.bar(x1, observed_grade_num, width=bar_width*0.8, color=color_list[line],label = label[line])
        ax4.bar(x1, (not_observed_grade_num+ observed_grade_num), width=bar_width*0.8,edgecolor=color_list[line],label =label[line])

        ax4.set_xlabel("预测的概率",fontsize= sup_fontsize *0.9)
        ax4.set_ylabel("样本数",fontsize= sup_fontsize *0.9)
        ymax = max(np.max(observed_grade_num+not_observed_grade_num), ymax)
        mark_line_x.append(x1)
        mark_line_y.append((not_observed_grade_num+ observed_grade_num)* x)

    ax1.set_xlim(0.0, 1)
    ax1.set_ylim(0.0, 1)
    ax1.set_xlabel("预测的概率",fontsize= sup_fontsize *0.9)
    ax1.set_ylabel("实况的发生比例",fontsize= sup_fontsize *0.9)
    ax1.legend(loc=2,fontsize= sup_fontsize *0.9)
    ax3.set_xlabel("空报率",fontsize= sup_fontsize *0.9)
    ax3.set_ylabel("命中率",fontsize= sup_fontsize *0.9)
    ax3.set_ylim(0.0, 1.0)
    ax3.set_xlim(0.0, 1.0)
    ax3.legend(loc=4,fontsize= sup_fontsize *0.9)
    ax4.set_xlim(0.0, 1)
    ax4.set(title='\n')
    ax4.set_xticks(np.arange(0,1.01,1/grade_count))
    #ax4.legend(loc="upper right", ncol=2)

    #mark_line_x = np.array(mark_line_x)
    #mark_line_y = np.array(mark_line_y)
    #mark_line_x = mark_line_x.T.flatten()
    #mark_line_y = mark_line_y.T.flatten()
    #ax4.plot(mark_line_x, mark_line_y, '.', color='k',markersize = bar_width * 300)
    #lines = ax4.get_children()
    #ax4.legend([lines[0], lines[grade_count],lines[grade_count * legend_num * 2 ]], ['观测正例', '观测负例',"合理比例"],
    #                     loc='upper center', bbox_to_anchor=(0.5, 1.0), ncol=3, prop={'size': 6},fontsize= sup_fontsize *0.9)

    if log_y: ax4.set_yscale('log')
    if vmax is None:
        ax4.set_ylim(0.0, ymax * 1.5)
    else:
        ax4.set_ylim(0.0, vmax)
    if save_path is None:
        show = True
    else:
        plt.savefig(save_path,bbox_inches='tight')
        print("检验结果已以图片形式保存至" + save_path)
    if show is True:
        plt.show()
    plt.close()
コード例 #4
0
ファイル: plot.py プロジェクト: alexanderhucheerful/meteva
def roc_hfmc(hfmc_array, member_list=None, save_path=None,show = False,dpi = 300, title="ROC图"):
    '''

    :param hfmc:
    :param save_path:
    :return:
    '''

    fig = plt.figure(figsize=(5, 5),dpi = dpi)
    grade_count = hfmc_array.shape[-2]
    sup_fontsize = 10
    grade = 1 / grade_count
    if grade_count < 1:
        print('grade_count输入错误,不能小于1')
        return
    grade_list = np.arange(0, 1, grade).tolist()
    grade_list.append(1.1)
    shape = list(hfmc_array.shape)
    new_hfmc_array = hfmc_array.reshape((-1, len(grade_list) - 1, 4))
    new_hfmc_array_shape = new_hfmc_array.shape
    label = []
    if member_list is None:
        if new_hfmc_array_shape[0] == 1:
            label.append('预报')
        else:
            for i in range(new_hfmc_array_shape[0]):
                label.append('预报' + str(i + 1))
    else:
        label.extend(member_list)


    for line in range(new_hfmc_array_shape[0]):
        far = [1]
        far.extend(pofd_hfmc(new_hfmc_array[line, :]).tolist())
        far.append(0)
        pod = [1]
        pod.extend(pod_hfmc(new_hfmc_array[line, :]).tolist())
        pod.append(0)
        far = np.array(far)
        pod = np.array(pod)
        if (far.size < 30):
            plt.plot(far, pod,  linewidth=2, marker=".", label=label[line])
        else:
            plt.plot(far, pod,  linewidth=2, label=label[line])
    plt.plot([0, 1], [0, 1], ":", color="k", linewidth=1, label="无技巧")
    plt.xlabel("空报率", fontsize=sup_fontsize * 0.9)
    plt.ylabel("命中率", fontsize=sup_fontsize * 0.9)
    plt.ylim(0.0, 1.0)
    plt.xlim(0.0, 1.0)
    plt.legend(loc=4, fontsize=sup_fontsize * 0.9)
    plt.title(title, fontsize=sup_fontsize)
    plt.xticks(fontsize=sup_fontsize * 0.8)
    plt.yticks(fontsize=sup_fontsize * 0.8)

    if save_path is None:
        show = True
    else:
        plt.savefig(save_path,bbox_inches='tight')
        print("检验结果已以图片形式保存至" + save_path)
    if show is True:
        plt.show()
    plt.close()
コード例 #5
0
ファイル: plot.py プロジェクト: woodsouth/meteva
def comprehensive_hnh(th_array, save_path=None, title="概率预报综合检验图"):
    '''

    :param th_array:
    :param save_path:
    :return:
    '''
    total_grade_num = th_array[:, 0]
    observed_grade_num = th_array[:, 1]
    total_num = np.sum(total_grade_num)

    under = np.zeros_like(total_grade_num)
    under[:] = total_grade_num[:]
    under[total_grade_num == 0] = 1
    ob_rate = observed_grade_num / under
    ob_rate[total_grade_num == 0] = IV
    ob_rate_noIV = set_plot_IV(ob_rate)
    ob_rate[total_grade_num == 0] = np.nan
    index_iv = np.where(total_grade_num == 0)

    not_observed_grade_num = total_grade_num - observed_grade_num

    ngrade = len(total_grade_num)
    grade = 1 / ngrade
    x = np.arange(grade / 2, 1, grade)

    line_x = np.arange(0, 1.01, 0.1)
    prefect_line_y = np.arange(0, 1.01, 0.1)
    climate_line_y = np.ones_like(line_x) * np.sum(
        observed_grade_num) / total_num
    fig = plt.figure(figsize=(10, 7))
    title_lines = len(title.split("\n"))
    plt.suptitle(title, y=0.90 + 0.03 * title_lines)
    plt.subplots_adjust(wspace=0.2, hspace=1)
    grid_plt = plt.GridSpec(6, 2)
    ax1 = plt.subplot(grid_plt[0:4, 0])
    plt.plot(x, ob_rate_noIV, "--", linewidth=0.5, color="k")
    x_iv = x[index_iv[0]]
    ob_rate_noIV_iv = ob_rate_noIV[index_iv[0]]
    plt.plot(x_iv, ob_rate_noIV_iv, "x", color='k')
    plt.plot(x, ob_rate, marker=".", markersize="10", label="实际预报", color="r")
    plt.plot(line_x, prefect_line_y, '--', label="完美预报", color="k")
    plt.plot(line_x, climate_line_y, ':', label="无技巧预报", color="k")
    plt.xlim(0.0, 1.0)
    plt.ylim(0.0, 1)
    plt.xlabel("预测的概率")
    plt.ylabel("实况的发生比例")
    plt.legend(loc=2)

    ax2 = plt.subplot(grid_plt[4:, 0])
    plt.bar(x, total_grade_num, width=0.03)
    #plt.setp(ax2.get_xticklabels())
    plt.xlim(0.0, 1.0)
    plt.ylabel("样本数")
    plt.xlabel("预测的概率")

    total_hap = np.sum(observed_grade_num)
    hfmc = np.zeros((len(total_grade_num), 4))
    for i in range(ngrade):
        hfmc[i, 0] = np.sum(observed_grade_num[i:])
        hfmc[i, 1] = np.sum(total_grade_num[i:]) - hfmc[i, 0]
        hfmc[i, 2] = total_hap - hfmc[i, 0]
        hfmc[i, 3] = total_num - (hfmc[i, 0] + hfmc[i, 1] + hfmc[i, 2])

    far = [1]
    far.extend(pofd_hfmc(hfmc).tolist())
    far.append(0)
    pod = [1]
    pod.extend(pod_hfmc(hfmc).tolist())
    pod.append(0)
    far = np.array(far)
    pod = np.array(pod)

    ax3 = plt.subplot(grid_plt[0:4, 1])
    plt.plot(far, pod, color="blue", linewidth=2, label="实际预报")
    plt.plot([0, 1], [0, 1], ":", color="k", linewidth=1, label="无技巧预报")
    plt.xlabel("空报率")
    plt.ylabel("命中率")
    plt.ylim(0.0, 1.0)
    plt.xlim(0.0, 1.0)
    plt.legend(loc=4)

    ax4 = plt.subplot(grid_plt[4:, 1])
    plt.bar(x - 0.01,
            not_observed_grade_num / total_num,
            width=0.02,
            edgecolor='r',
            fill=False,
            label="未发生")
    plt.bar(x + 0.01,
            observed_grade_num / total_num,
            width=0.02,
            color='b',
            label="已发生")

    plt.xlabel("预测的概率")
    plt.ylabel("占总样本数的比例")
    ymax = max(np.max(observed_grade_num / total_num),
               np.max(not_observed_grade_num / total_num)) * 1.5
    plt.ylim(0.0, ymax)
    plt.xlim(0.0, 1.0)

    plt.legend(loc="upper right", ncol=2)

    if save_path is None:
        plt.show()
    else:
        plt.savefig(save_path)
        print("检验结果已以图片形式保存至" + save_path)
    plt.close()
コード例 #6
0
ファイル: score.py プロジェクト: BMS-EN/meteva
def pofd_multi(ob, fo, grade_list):
    hfmc_array = hfmc_multi(ob, fo, grade_list)
    pofd_array = pofd_hfmc(hfmc_array)
    return pofd_array