コード例 #1
0
 def test_history(self):
     x0 = -np.array([1.3, 2.7])
     opt = BFGS(self.oracle,
                x0,
                line_search_options={
                    'method': 'Constant',
                    'c': 1.0
                },
                tolerance=1e-6)
     opt.run(10)
     x_min = opt.hist['x_star']
     func_steps = [25.635000000000005, 22.99, -9.48707349065929, -9.5]
     grad_norm_steps = [11.629703349613008, 11.4, 0.22738961577617722, 0.0]
     time_steps = [0.0] * 4  # Dummy values
     x_steps = [
         np.array([-1.3, -2.7]),
         np.array([1.0, 8.7]),
         np.array([1.0, 2.88630519]),
         np.array([1., 3.])
     ]
     true_history = dict(grad_norm=grad_norm_steps,
                         time=time_steps,
                         x=x_steps,
                         func=func_steps)
     check_equal_histories(opt.hist, true_history)
コード例 #2
0
    def test_quality(self):
        opt = BFGS(self.oracle, self.x0, tolerance=1e-5)
        opt.run(5)
        x_min = opt.hist['x_star']
        # x_min, message, _ = LBFGS(self.oracle, self.x0, tolerance=1e-5)
        f_min = self.oracle.func(x_min)

        g_k_norm_sqr = norm(self.A.dot(x_min) - self.b, 2)**2
        g_0_norm_sqr = norm(self.A.dot(self.x0) - self.b, 2)**2
        self.assertLessEqual(g_k_norm_sqr, 1e-5 * g_0_norm_sqr)
        self.assertLessEqual(abs(f_min - self.f_star), 1e-5 * g_0_norm_sqr)
コード例 #3
0
 def test_default(self):
     """Check if everything works correctly with default parameters."""
     opt = BFGS(self.oracle, self.x0)
     opt.run()
コード例 #4
0
 def test_max_iter(self):
     """Check if argument `max_iter` is supported."""
     opt = BFGS(self.oracle, self.x0)
     opt.run(max_iter=0)
コード例 #5
0
def run_all_methods(oracle,
                    sketch_sizes,
                    mat,
                    max_iter,
                    output_folder,
                    x_0=None,
                    sigma_tolerance=1e-10,
                    method_tolerance=1e-16,
                    stopping_criteria='func_abs',
                    add_text='',
                    random_state=None,
                    linesearch_methods=['Wolfe'],
                    methods=None,
                    overwrite=False):

    import os
    os.system('mkdir -p {}'.format(output_folder))

    if methods is None:
        methods = ['svd', 'svd-no-sigma', 'gauss', 'coord', 'bfgs', 'nesterov']

    np.random.seed(random_state)
    if x_0 is None:
        x_0 = np.random.normal(loc=0., scale=1., size=mat.shape[1])

    add_text = '_{}'.format(add_text) if add_text != '' else ''

    def run_rbfgs(mat_distr, line_search_options, distr_name, **kwargs):
        output_file = '{}/rbfgs_{}_linesearch={}{}.pkl'.format(
            output_folder, distr_name, line_search_options['method'].lower(),
            add_text)
        run_rbfgs_experiment(oracle,
                             x_0,
                             mat_distr=mat_distr,
                             sketch_sizes=sketch_sizes,
                             max_iter=max_iter,
                             tolerance=method_tolerance,
                             stopping_criteria=stopping_criteria,
                             output_file=output_file,
                             overwrite=overwrite,
                             **kwargs)

    if 'svd' in methods or 'svd-no-sigma' in methods:
        try:
            with open('{}/svd.pkl'.format(output_folder), 'rb') as file:
                U, sigma_diag, Vh = pickle.load(file)
                print('Read SVD from {}/svd.pkl'.format(output_folder))
        except FileNotFoundError:
            print('Computing SVD...', end='')
            U, sigma_diag, Vh = scipy.linalg.svd(mat.T, full_matrices=False)
            print('Done')
            with open('{}/svd.pkl'.format(output_folder), 'wb') as file:
                pickle.dump((U, sigma_diag, Vh), file)
        nondeg_count = (sigma_diag > sigma_tolerance).sum()
        print('Singular values above tolerance: {}'.format(nondeg_count))
        print()

    if 'svd' in methods:
        print('RBFGS-SVD sketch... ', end='')
        mat_distr = CustomDiscrete(U[:, :nondeg_count], sort_ids=True)
        for ls in linesearch_methods:
            run_rbfgs(mat_distr, {'method': ls}, 'svd')
        print('Done')

    if 'svd-no-sigma' in methods:
        print('RBFGS-SVD sketch no sigma... ', end='')
        mat_distr = CustomDiscrete(U, sort_ids=True)
        for ls in linesearch_methods:
            run_rbfgs(mat_distr, {'method': ls}, 'svd-no-sigma')
        print('Done')

    if 'gauss' in methods:
        print('RBFGS-gauss... ', end='')
        mat_distr = Gaussian(-1., 1., [mat.shape[1], 1])
        for ls in linesearch_methods:
            run_rbfgs(mat_distr, {'method': ls}, 'gauss')
        print('Done')

    if 'coord' in methods:
        print('RBFGS-coord...', end='')
        mat_distr = CustomDiscrete(np.eye(mat.shape[1]), sort_ids=True)
        for ls in linesearch_methods:
            run_rbfgs(mat_distr, {'method': ls}, 'coord')
        print('Done')

    if 'bfgs' in methods:
        print('BFGS... ', end='')
        for ls in linesearch_methods:
            if 'bfgs_linesearch={}{}.pkl'\
                .format(ls.lower(), add_text) not in os.listdir(output_folder):

                method = BFGS(oracle,
                              x_0,
                              tolerance=method_tolerance,
                              stopping_criteria=stopping_criteria,
                              line_search_options={'method': 'Wolfe'})
                method.run(max_iter)
                method.oracle = None
                method.H_k = None
                method.x_0 = None
                with open('{}/bfgs_linesearch={}{}.pkl'\
                          .format(output_folder, ls.lower(), add_text), 'wb') as file:
                    pickle.dump(method, file)
        print('Done')

    print()
    print('All runs completed.')