コード例 #1
0
def add_curves_Wyoming(ax, datetime, station, linewidth=1.0, LH_Tdepend=False):
    """
    overlaying new curves of multiple soundings from Wyoming datasets
    date: using datetime module. ex. datetime(2018,06,06) 
    station: station name. ex. 'MFL' Miami, Florida
    """
    from siphon.simplewebservice.wyoming import WyomingUpperAir

    date = datetime
    station = station
    df = WyomingUpperAir.request_data(date, station)
    pressure = df['pressure'].values
    Temp = df['temperature'].values
    Temp_dew = df['dewpoint'].values
    altitude = df['height'].values
    q = mpcalc.mixing_ratio(
        mpcalc.saturation_vapor_pressure(Temp_dew * units('degC')),
        pressure * units('mbar'))
    q = mpcalc.specific_humidity_from_mixing_ratio(q)
    qs = mpcalc.mixing_ratio(
        mpcalc.saturation_vapor_pressure(Temp * units('degC')),
        pressure * units('mbar'))

    # specific energies
    if LH_Tdepend == False:
        mse = mpcalc.moist_static_energy(altitude * units('meter'),
                                         Temp * units('degC'), q)
        mse_s = mpcalc.moist_static_energy(altitude * units('meter'),
                                           Temp * units('degC'), qs)
        dse = mpcalc.dry_static_energy(altitude * units('meter'),
                                       Temp * units('degC'))
    else:
        # A short course in cloud physics, Roger and Yau (1989)
        Lvt = (2500.8 - 2.36 * T.magnitude +
               0.0016 * T.magnitude**2 - 0.00006 * T.magnitude**3) * units(
                   'joule/gram')  # latent heat of evaporation
        #Lf = 2834.1 - 0.29*T - 0.004*T**2                  # latent heat of fusion

        mse = Cp_d * T + g * altitude + Lvt * q
        mse_s = Cp_d * T + g * altitude + Lvt * qs
        dse = mpcalc.dry_static_energy(altitude, T)

    # adding curves on the main axes
    ax.plot(dse.magnitude, pressure, 'k', linewidth=linewidth)
    ax.plot(mse.magnitude, pressure, 'b', linewidth=linewidth)
    ax.plot(mse_s.magnitude, pressure, 'r', linewidth=linewidth)
コード例 #2
0
    def get_weather(self):

        #------------------------------------------------------
        #------------------------------------------------------
        # Load TMY2
        if self.file_ext == TMY2EXT:
            f = open(self.weatherpath + self.city + self.file_ext, 'r')

            # Header read for lat and lon
            head = f.readline()
            self.lat = int(head[39:41]) + int(head[42:44]) / 60.0
            self.lon = int(head[47:50]) + int(head[51:53]) / 60.0

            line = f.readline()
            ind = 0
            while line:

                # Process the line
                self.tothor[ind] = float(
                    line[17:21])  #Total horizontal solar Wh/m2
                self.dirnorm[ind] = float(
                    line[23:27])  #Direct normal solar Wh/m2
                self.difhor[ind] = float(
                    line[29:33])  #Diffuse Horizontal Solar Wh/m2

                self.tdry[ind] = float(line[67:71]) * 0.1
                #tdrybulb (deg C)
                self.rhs[ind] = float(line[79:82]) * 0.01
                #relative humidity (%)
                self.tdew[ind] = float(line[73:77]) * 0.1
                #tdew (deg C) to conform with TB code

                self.press[ind] = float(line[84:88])
                #atmospheric pressure (mbar) mb = 100 Pascals
                #self.wind_speed[ind]   = float(line[95:98]) * 0.1;		#windspeed m/s
                #self.wind_dir[ind]     = float(line[90:93]);   			#wind direction azimuth

                #self.cloud[ind]        = float(line[59:61])/10.0;		    #Could cover fraction
                #wd.ocloud       = getint(line,63,2)/10.0;		        #Opaque cloud cover fraction
                #wd.ceilht       = getint(line,106,5);		            #Cloud ceiling height m

                # Calculate specfic humidity from dry bulb, dew point, and atm pressure using MetPy
                self.huss[ind] = mpcalc.specific_humidity_from_mixing_ratio(
                    mpcalc.mixing_ratio_from_relative_humidity(
                        mpcalc.relative_humidity_from_dewpoint(
                            self.tdry[ind] * units.degC,
                            self.tdew[ind] * units.degC),
                        self.tdry[ind] * units.degC,
                        self.press[ind] * units.mbar))

                #Next line
                line = f.readline()
                ind = ind + 1

            f.close()

        #------------------------------------------------------
        #------------------------------------------------------
        # Load TMY3
        elif self.file_ext == TMY3EXT:
            f = open(
                self.weatherpath + TMY3NUMBER[CITY.index(self.city)] +
                self.file_ext, 'r')

            # Header read for lat and lon
            head = f.readline().split(',')
            self.lat = float(head[4])
            self.lon = float(head[5])

            #Burn a line for the second part of the header.
            line = f.readline()

            line = f.readline()
            ind = 0
            while line:

                line = line.split(',')

                if len(line) < 20:
                    print('line is short!')
                # Process the line
                self.tothor[ind] = float(
                    line[4])  #Total horizontal solar Wh/m2
                self.dirnorm[ind] = float(line[7])  #Direct normal solar Wh/m2
                self.difhor[ind] = float(
                    line[10])  #Diffuse Horizontal Solar Wh/m2

                self.tdry[ind] = float(line[31])
                #tdrybulb (deg C)
                self.rhs[ind] = float(line[37]) * 0.01
                #relative humidity (%)
                self.tdew[ind] = float(line[34])
                #tdew (deg C) to conform with TB code

                self.press[ind] = float(line[40])
                #atmospheric pressure (mbar) mb = 100 Pascals
                #self.wind_speed[ind]   = float(line[46]);		#windspeed m/s
                #self.wind_dir[ind]     = float(line[43]);   			#wind direction azimuth

                # Calculate specfic humidity from dry bulb, dew point, and atm pressure using MetPy
                self.huss[ind] = mpcalc.specific_humidity_from_mixing_ratio(
                    mpcalc.mixing_ratio_from_relative_humidity(
                        mpcalc.relative_humidity_from_dewpoint(
                            self.tdry[ind] * units.degC,
                            self.tdew[ind] * units.degC),
                        self.tdry[ind] * units.degC,
                        self.press[ind] * units.mbar))

                #Next line
                line = f.readline()
                ind = ind + 1

            f.close()
コード例 #3
0
ファイル: test_thermo.py プロジェクト: nixoncameronj/MetPy
def test_specific_humidity_from_mixing_ratio():
    """Test specific humidity from mixing ratio."""
    w = 0.01215 * units.dimensionless
    q = specific_humidity_from_mixing_ratio(w)
    assert_almost_equal(q, 0.01200, 5)
コード例 #4
0
def get_specific_humidity(profiles):

    qv = mpcalc.specific_humidity_from_mixing_ratio(profiles["mr"])
    profiles["qv"] = (["launch_time", "zlay"], qv.magnitude)

    return profiles
コード例 #5
0
ファイル: gcnet2nc.py プロジェクト: ajcse1/jaws
def gradient_fluxes(df):  # This method is very sensitive to input data quality
    """Returns Sensible Heat Flux and Latent Heat Flux based on Steffen & DeMaria (1996) method"""
    g = 9.81  # m/s**2
    cp = 1005  # J/kg/K
    k = 0.4  # von Karman
    Lv = 2.50e6  # J/kg

    fillvalue = common.fillvalue_float

    ht_low, ht_high, ta_low, ta_high, wspd_low, wspd_high, rh_low, rh_high, phi_m, phi_h = ([] for _ in range(10))

    # Average temp from both sensors for height1 and height2
    ta1 = df.loc[:, ("ta_tc1", "ta_cs1")]
    ta2 = df.loc[:, ("ta_tc2", "ta_cs2")]
    df['ta1'] = ta1.mean(axis=1)
    df['ta2'] = ta2.mean(axis=1)

    # Assign low and high depending on height of sensors
    idx = 0
    while idx < len(df):
        if df['wind_sensor_height_1'][idx] == fillvalue or df['wind_sensor_height_2'][idx] == fillvalue:
            ht_low.append(np.nan)
            ht_high.append(np.nan)
            ta_low.append(df['ta1'][idx])
            ta_high.append(df['ta2'][idx])
            wspd_low.append(df['wspd1'][idx])
            wspd_high.append(df['wspd2'][idx])
            rh_low.append(df['rh1'][idx])
            rh_high.append(df['rh2'][idx])
        elif df['wind_sensor_height_1'][idx] > df['wind_sensor_height_2'][idx]:
            ht_low.append(df['wind_sensor_height_2'][idx])
            ht_high.append(df['wind_sensor_height_1'][idx])
            ta_low.append(df['ta2'][idx])
            ta_high.append(df['ta1'][idx])
            wspd_low.append(df['wspd2'][idx])
            wspd_high.append(df['wspd1'][idx])
            rh_low.append(df['rh2'][idx])
            rh_high.append(df['rh1'][idx])
        else:
            ht_low.append(df['wind_sensor_height_1'][idx])
            ht_high.append(df['wind_sensor_height_2'][idx])
            ta_low.append(df['ta1'][idx])
            ta_high.append(df['ta2'][idx])
            wspd_low.append(df['wspd1'][idx])
            wspd_high.append(df['wspd2'][idx])
            rh_low.append(df['rh1'][idx])
            rh_high.append(df['rh2'][idx])

        idx += 1

    # Convert lists to arrays
    ht_low = np.asarray(ht_low)
    ht_high = np.asarray(ht_high)
    ta_low = np.asarray(ta_low)
    ta_high = np.asarray(ta_high)
    wspd_low = np.asarray(wspd_low)
    wspd_high = np.asarray(wspd_high)
    rh_low = np.asarray(rh_low)
    rh_high = np.asarray(rh_high)
    ps = np.asarray(df['ps'].values)

    # Potential Temperature
    pot_tmp_low = potential_temperature(ps * units.pascal, ta_low * units.kelvin).magnitude
    pot_tmp_high = potential_temperature(ps * units.pascal, ta_high * units.kelvin).magnitude
    pot_tmp_avg = (pot_tmp_low + pot_tmp_high)/2
    ta_avg = (ta_low + ta_high)/2

    # Ri
    du = wspd_high-wspd_low
    du = np.asarray([fillvalue if i == 0 else i for i in du])
    pot_tmp_avg = np.asarray([fillvalue if i == 0 else i for i in pot_tmp_avg])
    ri = g*(pot_tmp_high - pot_tmp_low)*(ht_high - ht_low)/(pot_tmp_avg*du)

    # Phi
    for val in ri:
        if val < -0.03:
            phi = (1-18*val)**-0.25
            phi_m.append(phi)
            phi_h.append(phi/1.3)
        elif -0.03 <= val < 0:
            phi = (1-18*val)**-0.25
            phi_m.append(phi)
            phi_h.append(phi)
        else:
            phi = (1-5.2*val)**-1
            phi_m.append(phi)
            phi_h.append(phi)

    phi_e = phi_h

    # air density
    rho = density(ps * units.pascal, ta_avg * units.kelvin, 0).magnitude  # Use average temperature

    # SH
    ht_low = np.asarray([fillvalue if i == 0 else i for i in ht_low])
    num = np.asarray([-a1 * cp * k**2 * (b1 - c1) * (d1 - e1) for a1, b1, c1, d1, e1 in
           zip(rho, pot_tmp_high, pot_tmp_low, wspd_high, wspd_low)])
    dnm = [a2 * b2 * np.log(c2 / d2)**2 for a2, b2, c2, d2 in
           zip(phi_h, phi_m, ht_high, ht_low)]
    dnm = np.asarray([fillvalue if i == 0 else i for i in dnm])
    sh = num/dnm
    sh = [fillvalue if abs(i) >= 100 else i for i in sh]

    # Specific Humidity
    mixing_ratio_low = mixing_ratio_from_relative_humidity(rh_low, ta_low * units.kelvin, ps * units.pascal)
    mixing_ratio_high = mixing_ratio_from_relative_humidity(rh_high, ta_high * units.kelvin, ps * units.pascal)
    q_low = specific_humidity_from_mixing_ratio(mixing_ratio_low).magnitude
    q_high = specific_humidity_from_mixing_ratio(mixing_ratio_high).magnitude
    q_low = q_low/100  # Divide by 100 to make it in range [0,1]
    q_high = q_high/100

    # LH
    num = np.asarray([-a1 * Lv * k**2 * (b1 - c1) * (d1 - e1) for a1, b1, c1, d1, e1 in
           zip(rho, q_high, q_low, wspd_high, wspd_low)])
    dnm = [a2 * b2 * np.log(c2 / d2)**2 for a2, b2, c2, d2 in
           zip(phi_e, phi_m, ht_high, ht_low)]
    dnm = np.asarray([fillvalue if i == 0 else i for i in dnm])
    lh = num/dnm
    lh = [fillvalue if abs(i) >= 100 else i for i in lh]

    return sh, lh
コード例 #6
0
ファイル: test_thermo.py プロジェクト: dodolooking/MetPy
def test_specific_humidity_from_mixing_ratio():
    """Test specific humidity from mixing ratio."""
    w = 0.01215 * units.dimensionless
    q = specific_humidity_from_mixing_ratio(w)
    assert_almost_equal(q, 0.01200, 5)