コード例 #1
0
ファイル: test_triangles.py プロジェクト: ahill818/MetPy
def test_dist_2():
    r"""Test squared distance function."""
    x0 = 0
    y0 = 0

    x1 = 10
    y1 = 10

    truth = 200

    dist2 = dist_2(x0, y0, x1, y1)

    assert_almost_equal(truth, dist2)
コード例 #2
0
ファイル: test_triangles.py プロジェクト: wholmgren/MetPy
def test_dist_2():
    r"""Test squared distance function."""
    x0 = 0
    y0 = 0

    x1 = 10
    y1 = 10

    truth = 200

    dist2 = dist_2(x0, y0, x1, y1)

    assert_almost_equal(truth, dist2)
コード例 #3
0
ファイル: test_interpolation.py プロジェクト: ahill818/MetPy
def test_cressman_point(test_data):
    r"""Test Cressman interpolation for a point function."""
    xp, yp, z = test_data

    r = 40

    obs_tree = cKDTree(list(zip(xp, yp)))

    indices = obs_tree.query_ball_point([30, 30], r=r)

    dists = dist_2(30, 30, xp[indices], yp[indices])
    values = z[indices]

    truth = 1.05499444404

    value = cressman_point(dists, values, r)

    assert_almost_equal(truth, value)
コード例 #4
0
def test_cressman_point(test_data):
    r"""Test Cressman interpolation for a point function."""
    xp, yp, z = test_data

    r = 40

    obs_tree = cKDTree(list(zip(xp, yp)))

    indices = obs_tree.query_ball_point([30, 30], r=r)

    dists = dist_2(30, 30, xp[indices], yp[indices])
    values = z[indices]

    truth = 1.05499444404

    value = cressman_point(dists, values, r)

    assert_almost_equal(truth, value)
コード例 #5
0
ファイル: test_interpolation.py プロジェクト: ahill818/MetPy
def test_barnes_point(test_data):
    r"""Test Barnes interpolation for a point function."""
    xp, yp, z = test_data

    r = 40

    obs_tree = cKDTree(list(zip(xp, yp)))

    indices = obs_tree.query_ball_point([60, 60], r=r)

    dists = dist_2(60, 60, xp[indices], yp[indices])
    values = z[indices]

    truth = 4.08718241061

    ave_spacing = np.mean((cdist(list(zip(xp, yp)), list(zip(xp, yp)))))

    kappa = calc_kappa(ave_spacing)

    value = barnes_point(dists, values, kappa)

    assert_almost_equal(truth, value)
コード例 #6
0
def test_barnes_point(test_data):
    r"""Test Barnes interpolation for a point function."""
    xp, yp, z = test_data

    r = 40

    obs_tree = cKDTree(list(zip(xp, yp)))

    indices = obs_tree.query_ball_point([60, 60], r=r)

    dists = dist_2(60, 60, xp[indices], yp[indices])
    values = z[indices]

    truth = 4.08718241061

    ave_spacing = np.mean((cdist(list(zip(xp, yp)), list(zip(xp, yp)))))

    kappa = calc_kappa(ave_spacing)

    value = barnes_point(dists, values, kappa)

    assert_almost_equal(truth, value)
コード例 #7
0
def inverse_distance(xp,
                     yp,
                     variable,
                     grid_x,
                     grid_y,
                     r,
                     gamma=None,
                     kappa=None,
                     min_neighbors=3,
                     kind='cressman'):
    r"""Generate an inverse distance weighting interpolation of the given
    points to the given grid based on either Cressman (1959) or Barnes (1964).
    The Barnes implementation used here based on Koch et al. (1983).

    Parameters
    ----------
    xp: (N, ) ndarray
        x-coordinates of observations.
    yp: (N, ) ndarray
        y-coordinates of observations.
    variable: (N, ) ndarray
        observation values associated with (xp, yp) pairs.
        IE, variable[i] is a unique observation at (xp[i], yp[i]).
    grid_x: (M, 2) ndarray
        Meshgrid associated with x dimension.
    grid_y: (M, 2) ndarray
        Meshgrid associated with y dimension.
    r: float
        Radius from grid center, within which observations
        are considered and weighted.
    gamma: float
        Adjustable smoothing parameter for the barnes interpolation. Default None.
    kappa: float
        Response parameter for barnes interpolation. Default None.
    min_neighbors: int
        Minimum number of neighbors needed to perform barnes or cressman interpolation
        for a point. Default is 3.
    kind: str
        Specify what inverse distance weighting interpolation to use.
        Options: 'cressman' or 'barnes'. Default 'cressman'

    Returns
    -------
    img: (M, N) ndarray
        Interpolated values on a 2-dimensional grid
    """

    obs_tree = cKDTree(list(zip(xp, yp)))

    grid_points = points.generate_grid_coords(grid_x, grid_y)

    indices = obs_tree.query_ball_point(grid_points, r=r)

    img = np.empty(shape=(grid_points.shape[0]), dtype=variable.dtype)
    img.fill(np.nan)

    for idx, (matches, grid) in enumerate(zip(indices, grid_points)):
        if len(matches) >= min_neighbors:

            x1, y1 = obs_tree.data[matches].T
            values = variable[matches]
            dists = triangles.dist_2(grid[0], grid[1], x1, y1)

            if kind == 'cressman':
                img[idx] = cressman_point(dists, values, r)
            elif kind == 'barnes':
                img[idx] = barnes_point(dists, values, kappa)

            else:
                raise ValueError(str(kind) + ' interpolation not supported.')

    img = img.reshape(grid_x.shape)
    return img
コード例 #8
0
###########################################
# Set up a cKDTree object and query all of the observations within "radius" of each grid point.
#
# The variable ``indices`` represents the index of each matched coordinate within the
# cKDTree's ``data`` list.
grid_points = np.array(list(zip(sim_gridx, sim_gridy)))

radius = 40
obs_tree = cKDTree(list(zip(xp, yp)))
indices = obs_tree.query_ball_point(grid_points, r=radius)

###########################################
# For grid 0, we will use Cressman to interpolate its value.
x1, y1 = obs_tree.data[indices[0]].T
cress_dist = dist_2(sim_gridx[0], sim_gridy[0], x1, y1)
cress_obs = zp[indices[0]]

cress_val = cressman_point(cress_dist, cress_obs, radius)

###########################################
# For grid 1, we will use barnes to interpolate its value.
#
# We need to calculate kappa--the average distance between observations over the domain.
x2, y2 = obs_tree.data[indices[1]].T
barnes_dist = dist_2(sim_gridx[1], sim_gridy[1], x2, y2)
barnes_obs = zp[indices[1]]

ave_spacing = np.mean((cdist(list(zip(xp, yp)), list(zip(xp, yp)))))
kappa = calc_kappa(ave_spacing)