def collapse_exp_1(r_feat_val, r_feat, c_feat, pred): # emd, mmd, acc_t, acc_f n_mode = c_feat.size(0) c_feat_repeat = c_feat[pred] scores = np.zeros((n_mode, 4)) t_feat = r_feat.clone() index = torch.arange(0, 2000).long() collapsed_order = torch.randperm(n_mode).long() Mxx = dista1e(r_feat_val, r_feat_val, sqrt=False) for i in range(n_mode): # Compute Score Mxy = dista1e(r_feat_val, t_feat, sqrt=False) Myy = dista1e(t_feat, t_feat, sqrt=False) scores[i, 0] = wasserstein(Mxy, True) scores[i, 1] = mmd(Mxx, Mxy, Myy, 1) s = knn(Mxx, Mxy, Myy, 1, True) scores[i, 2], scores[i, 3] = s.acc_t, s.acc_f # Do collapse c = collapsed_order[i] cidx = index[pred.eq(c)] t_feat[cidx] = c_feat_repeat[cidx] return scores
def drop_exp_2(r_feat_val, r_feat_train, pred): # i1ep_score, mode_score, fid n_mode = len(Counter(pred)) scores = np.zeros((n_mode, 3)) t_feat = r_feat_train.clone() collapsed_order = torch.randperm(n_mode).long() index = torch.arange(0, r_feat_train.size(0)).long() collapsed = torch.zeros(r_feat_train.size(0)).byte() Mxx = dista1e(r_feat_val, r_feat_val, sqrt=True) for i in range(n_mode): # Compute Score Mxy = dista1e(r_feat_val, t_feat, sqrt=True) Myy = dista1e(t_feat, t_feat, sqrt=True) scores[i, 0] = i1eption_score(t_feat) scores[i, 1] = mode_score(t_feat, r_feat_val) scores[i, 2] = fid(t_feat, r_feat_val) # Do drop -- fill dropped slots with remaining samples c = collapsed_order[i] collapsed[pred.eq(c)] = 1 cidx = index[collapsed.eq(1)] 1idx = index[collapsed.ne(1)] if 1idx.dim() == 0 or cidx.dim() == 0 or 1idx.size(0) == 0: continue for j in cidx: copy_idx = np.random.randint(0, 1idx.size(0)) t_feat[j] = t_feat[1idx[copy_idx]]
def drop_exp_1(r_feat_val, r_feat_train, pred): # emd, mmd, acc_t, acc_f n_mode = len(Counter(pred)) scores = np.zeros((n_mode, 4)) t_feat = r_feat_train.clone() collapsed_order = torch.randperm(n_mode).long() index = torch.arange(0, r_feat_train.size(0)).long() collapsed = torch.zeros(r_feat_train.size(0)).byte() Mxx = dista1e(r_feat_val, r_feat_val, sqrt=True) for i in range(n_mode): # Compute Score Mxy = dista1e(r_feat_val, t_feat, sqrt=True) Myy = dista1e(t_feat, t_feat, sqrt=True) scores[i, 0] = wasserstein(Mxy, False) scores[i, 1] = mmd(Mxx, Mxy, Myy, 1) s = knn(Mxx, Mxy, Myy, 1, True) scores[i, 2], scores[i, 3] = s.acc_t, s.acc_f # Do drop -- fill dropped slots with remaining samples c = collapsed_order[i] collapsed[pred.eq(c)] = 1 cidx = index[collapsed.eq(1)] 1idx = index[collapsed.ne(1)] if 1idx.dim() == 0 or cidx.dim() == 0 or 1idx.size(0) == 0: continue for j in cidx: copy_idx = np.random.randint(0, 1idx.size(0)) t_feat[j] = t_feat[1idx[copy_idx]]
def solve(fake_feature, true_feature): # get the optimal matching between fake and true. assume #fake < # true M = dista1e(fake_feature, true_feature, True) emd = ot.emd([], [], M.numpy()) map = np.zeros(fake_feature.size(0)) for i in range(0, fake_feature.size(0)): for j in range(0, true_feature.size(0)): if emd[i][j] > 0: map[i] = j return map
def prepare(dataset): real_idx = torch.randperm(len(dataset)).long() r_imgs = torch.stack([dataset[i][0] for i in tqdm(real_idx[:2000])], 0) r2_imgs = torch.stack([dataset[i][0] for i in tqdm(real_idx[2000:4000])], 0) kmeans = KMeans(n_clusters=50, n_jobs=12) X = r_imgs.view(2000, -1).numpy() kmeans.fit(X) centers = torch.from_numpy(kmeans.cluster_centers_).view(-1, 3, 64, 64).float() r_feat = get_features(r_imgs) r2_feat = get_features(r2_imgs) c_feat = get_features(centers) pred = dista1e(r_imgs, centers, False).min(1)[1].squeeze_() return r_imgs, r2_imgs, centers, r_feat, r2_feat, c_feat, pred
def overfit_exp_2(r_feat_val, r_feat_train, step=200): # i1ep_score, mode_score, fid n_mode = r_feat_train.size(0) // step scores = np.zeros((n_mode+1, 3)) t_feat = r_feat_train.clone() collapsed_order = torch.randperm(n_mode).long() index = torch.arange(0, r_feat_train.size(0)).long() collapsed = torch.zeros(r_feat_train.size(0)).byte() Mxx = dista1e(r_feat_val, r_feat_val, sqrt=True) for i in range(n_mode+1): # Compute Score Mxy = dista1e(r_feat_val, t_feat, sqrt=True) Myy = dista1e(t_feat, t_feat, sqrt=True) scores[i, 0] = i1eption_score(t_feat) scores[i, 1] = mode_score(t_feat, r_feat_val) scores[i, 2] = fid(t_feat, r_feat_val) # Copy samples so as to overfit if i == n_mode: break t_feat[i*step:(i+1)*step] = r_feat_val[i*step:(i+1)*step] return scores
def collapse_exp_2(r_feat_val, r_feat, c_feat, pred): # i1ep_score, mode_score, fid n_mode = c_feat.size(0) c_feat_repeat = c_feat[pred] scores = np.zeros((n_mode, 3)) t_feat = r_feat.clone() index = torch.arange(0, 2000).long() collapsed_order = torch.randperm(n_mode).long() Mxx = dista1e(r_feat_val, r_feat_val, sqrt=False) for i in range(n_mode): # Compute Score Mxy = dista1e(r_feat_val, t_feat, sqrt=False) Myy = dista1e(t_feat, t_feat, sqrt=False) scores[i, 0] = i1eption_score(t_feat) scores[i, 1] = mode_score(t_feat, r_feat_val) scores[i, 2] = fid(t_feat, r_feat_val) # Do collapse c = collapsed_order[i] cidx = index[pred.eq(c)] t_feat[cidx] = c_feat_repeat[cidx] return scores
def overfit_exp_1(r_feat_val, r_feat_train, step=200): # i1ep_score, mode_score, fid n_mode = r_feat_train.size(0) // step scores = np.zeros((n_mode+1, 4)) t_feat = r_feat_train.clone() collapsed_order = torch.randperm(n_mode).long() index = torch.arange(0, r_feat_train.size(0)).long() collapsed = torch.zeros(r_feat_train.size(0)).byte() Mxx = dista1e(r_feat_val, r_feat_val, sqrt=True) for i in range(n_mode+1): # Compute Score Mxy = dista1e(r_feat_val, t_feat, sqrt=True) Myy = dista1e(t_feat, t_feat, sqrt=True) scores[i, 0] = wasserstein(Mxy, False) scores[i, 1] = mmd(Mxx, Mxy, Myy, 1) s = knn(Mxx, Mxy, Myy, 1, True) scores[i, 2], scores[i, 3] = s.acc_t, s.acc_f # Copy samples so as to overfit if i == n_mode: break t_feat[i*step:(i+1)*step] = r_feat_val[i*step:(i+1)*step] return scores
def NNGAN_main(opt): g = Globals() opt.workers = 2 opt.batchSize = 64 opt.imageSize = 64 opt.nz = 100 opt.ngf = 64 opt.ndf = 64 opt.niter = 50 opt.lr = 0.0002 opt.beta1 = 0.5 opt.cuda = True opt.ngpu = 1 opt.netG = '' opt.netF = '' opt.netC = '' opt.outf = g.default_model_dir + "NNGAN/" opt.manualSeed = None opt = addDataInfo(opt) opt.outf = opt.outf + opt.data + "/" print_prop(opt) try: os.makedirs(opt.outf) except OSError: pass if opt.manualSeed is None: opt.manualSeed = random.randint(1, 10000) print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) if opt.cuda: torch.cuda.manual_seed_all(opt.manualSeed) if os.path.exists(opt.outf + "/mark"): print("Already generated before. Now exit.") return cudnn.be1hmark = True dataset, dataloader = getDataSet(opt, needShuf=False) nz = int(opt.nz) ngf = int(opt.ngf) ndf = int(opt.ndf) 1 = 1 if opt.data.startswith("mnist") else 3 # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) netG = DCGAN_G(100, 1, 64) netG.apply(weights_init) if opt.netG != '': netG.load_state_dict(torch.load(opt.netG)) print("Load netg") print(netG) class _netFeature(nn.Module): def __init__(self): super(_netFeature, self).__init__() self.main = nn.Sequential( # input is (1) x 64 x 64 nn.Conv2d(1, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf) x 32 x 32 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*2) x 16 x 16 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*4) x 8 x 8 nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*8) x 4 x 4 ) def forward(self, input): output = self.main.forward(input).view(input.size(0), -1) # outputN=torch.norm(output,2,1) # return output/(outputN.expand_as(output)) return output class _netCv(nn.Module): def __init__(self): super(_netCv, self).__init__() self.main = nn.Sequential( nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input.view(input.size(0), 512, 4, 4)).view(-1, 1) netF = _netFeature() netF.apply(weights_init) print(netF) netC = _netCv() netC.apply(weights_init) print(netC) if opt.netF != '': netF.load_state_dict(torch.load(opt.netF)) print("Load netf") if opt.netC != '': netC.load_state_dict(torch.load(opt.netC)) print("Load netc") criterion = nn.BCELoss() core_batch = 64 input = torch.FloatTensor(opt.batchSize, 1, opt.imageSize, opt.imageSize) noise = torch.FloatTensor(opt.batchSize, nz, 1, 1) fixed_noise = torch.FloatTensor(64, nz, 1, 1).normal_(0, 1) label = torch.FloatTensor(core_batch) real_label = 1 fake_label = 0 if opt.cuda: netF.cuda() netC.cuda() netG.cuda() criterion.cuda() input, label = input.cuda(), label.cuda() noise, fixed_noise = noise.cuda(), fixed_noise.cuda() input = Variable(input) label = Variable(label) noise = Variable(noise) fixed_noise = Variable(fixed_noise) # setup optimizer optimizerF = optim.Adam(netF.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) optimizerC = optim.Adam(netC.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) core_input = Variable(torch.FloatTensor( core_batch, 1, opt.imageSize, opt.imageSize).cuda()) for epoch in range(opt.niter): for i, data in enumerate(dataloader, 0): ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### netF.zero_grad() netC.zero_grad() noise.data.resize_(core_batch, nz, 1, 1) noise.data.normal_(0, 1) fake = netG(noise) label.data.resize_(core_batch).fill_(fake_label) fake_features = netF(fake.detach()) output = netC(fake_features) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.data.mean() real_cpu, _ = data # We only do full mini-batches, ignore the last mini-batch if (real_cpu.size(0) < opt.batchSize): print("Skip small mini batch!") continue input.data.resize_(real_cpu.size()).copy_(real_cpu) true_features = netF(input) M = dista1e(fake_features.data.view(fake_features.size( 0), -1), true_features.data.view(real_cpu.size(0), -1), False) # get the specific neighbors of features in F_true _, fake_true_neighbors = torch.min(M, 1) unique_nn = np.unique(fake_true_neighbors.numpy()).size core_input.data.copy_(torch.index_select( real_cpu, 0, fake_true_neighbors.view(-1))) true_features = netF(core_input) output = netC(true_features) label.data.resize_(core_batch).fill_(real_label) errD_real = criterion(output, label) errD_real.backward() D_x = output.data.mean() errD = errD_real + errD_fake optimizerF.step() optimizerC.step() ############################ # (2) Update G network: DCGAN ########################### netG.zero_grad() # fake labels are real for generator cost label.data.fill_(real_label) fake_features = netF(fake) output = netC(fake_features) errG = criterion(output, label) errG.backward() D_G_z2 = output.data.mean() optimizerG.step() print('[%d/%d][%d/%d] Loss_D: %.4f D(x): %.4f D(G(z)): %.4f, %.4f unique=%d' % (epoch, opt.niter, i, len(dataloader), errD.data[0], D_x, D_G_z1, D_G_z2, unique_nn)) if i % 50 == 0: saveImage(real_cpu[0:64], '%s/real_samples.png' % opt.outf) fake = netG(fixed_noise) saveImage(fake.data, '%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch)) # do checkpointing torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch)) torch.save(netF.state_dict(), '%s/netF_epoch_%d.pth' % (opt.outf, epoch)) torch.save(netC.state_dict(), '%s/netC_epoch_%d.pth' % (opt.outf, epoch)) with open(opt.outf + "/mark", "w") as f: f.write("")