def metric_dcase2019(gen, sed_pred, doa_pred): sed_gt = gen.all_label_sed_2d() doa_gt = gen.all_label_doa_2d() sed_metric = evaluation_metrics.compute_sed_scores( sed_pred, sed_gt, feat_cls.nb_frames_1s()) doa_metric = evaluation_metrics.compute_doa_scores_regr_xyz( doa_pred, doa_gt, sed_pred, sed_gt) seld_metric = evaluation_metrics.early_stopping_metric( sed_metric, doa_metric) return sed_metric, doa_metric, seld_metric
def metric_dcase2020(gen, sed_pred, doa_pred): sed_gt = gen.all_label_sed_2d() doa_gt = gen.all_label_doa_2d() cls_new_metric = SELD_evaluation_metrics.SELDMetrics( nb_classes=gen._Ncat, doa_threshold=params['lad_doa_thresh']) pred_dict = feat_cls.regression_label_format_to_output_format( sed_pred, doa_pred) gt_dict = feat_cls.regression_label_format_to_output_format( sed_gt, doa_gt) pred_blocks_dict = feat_cls.segment_labels(pred_dict, sed_pred.shape[0]) gt_blocks_dict = feat_cls.segment_labels(gt_dict, sed_gt.shape[0]) cls_new_metric.update_seld_scores_xyz(pred_blocks_dict, gt_blocks_dict) new_metric = cls_new_metric.compute_seld_scores() new_seld_metric = evaluation_metrics.early_stopping_metric( new_metric[:2], new_metric[2:]) return new_metric, new_seld_metric
def main(argv): """ Main wrapper for training sound event localization and detection network. :param argv: expects two optional inputs. first input: task_id - (optional) To chose the system configuration in parameters.py. (default) 1 - uses default parameters second input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1 """ print(argv) if len(argv) != 3: print('\n\n') print( '-------------------------------------------------------------------------------------------------------' ) print('The code expected two optional inputs') print('\t>> python seld.py <task-id> <job-id>') print( '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py' ) print('Using default inputs for now') print( '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). ' 'You can use any number or string for this.') print( '-------------------------------------------------------------------------------------------------------' ) print('\n\n') # use parameter set defined by user task_id = '1' if len(argv) < 2 else argv[1] params = parameter.get_params(task_id) job_id = 1 if len(argv) < 3 else argv[-1] feat_cls = cls_feature_class.FeatureClass(params) train_splits, val_splits, test_splits = None, None, None if params['mode'] == 'dev': test_splits = [1] val_splits = [2] train_splits = [[3, 4, 5, 6]] elif params['mode'] == 'eval': test_splits = [[7, 8]] val_splits = [[1]] train_splits = [[2, 3, 4, 5, 6]] avg_scores_val = [] avg_scores_test = [] for split_cnt, split in enumerate(test_splits): print( '\n\n---------------------------------------------------------------------------------------------------' ) print( '------------------------------------ SPLIT {} -----------------------------------------------' .format(split)) print( '---------------------------------------------------------------------------------------------------' ) # Unique name for the run cls_feature_class.create_folder(params['model_dir']) unique_name = '{}_{}_{}_{}_split{}'.format(task_id, job_id, params['dataset'], params['mode'], split) unique_name = os.path.join(params['model_dir'], unique_name) model_name = '{}_model.h5'.format(unique_name) print("unique_name: {}\n".format(unique_name)) # Load train and validation data print('Loading training dataset:') data_gen_train = cls_data_generator.DataGenerator( params=params, split=train_splits[split_cnt]) print('Loading validation dataset:') data_gen_val = cls_data_generator.DataGenerator( params=params, split=val_splits[split_cnt], shuffle=False) # Collect the reference labels for validation data data_in, data_out = data_gen_train.get_data_sizes() print('FEATURES:\n\tdata_in: {}\n\tdata_out: {}\n'.format( data_in, data_out)) nb_classes = data_gen_train.get_nb_classes() gt = collect_test_labels(data_gen_val, data_out, nb_classes, params['quick_test']) sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0]) doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1]) print( 'MODEL:\n\tdropout_rate: {}\n\tCNN: nb_cnn_filt: {}, f_pool_size{}, t_pool_size{}\n\trnn_size: {}, fnn_size: {}\n\tdoa_objective: {}\n' .format(params['dropout_rate'], params['nb_cnn2d_filt'], params['f_pool_size'], params['t_pool_size'], params['rnn_size'], params['fnn_size'], params['doa_objective'])) print('Using loss weights : {}'.format(params['loss_weights'])) model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'], nb_cnn2d_filt=params['nb_cnn2d_filt'], f_pool_size=params['f_pool_size'], t_pool_size=params['t_pool_size'], rnn_size=params['rnn_size'], fnn_size=params['fnn_size'], weights=params['loss_weights'], doa_objective=params['doa_objective']) best_seld_metric = 99999 best_epoch = -1 patience_cnt = 0 nb_epoch = 2 if params['quick_test'] else params['nb_epochs'] seld_metric = np.zeros(nb_epoch) new_seld_metric = np.zeros(nb_epoch) tr_loss = np.zeros(nb_epoch) doa_metric = np.zeros((nb_epoch, 6)) sed_metric = np.zeros((nb_epoch, 2)) new_metric = np.zeros((nb_epoch, 4)) # start training for epoch_cnt in range(nb_epoch): start = time.time() # train once per epoch hist = model.fit_generator( generator=data_gen_train.generate(), steps_per_epoch=2 if params['quick_test'] else data_gen_train.get_total_batches_in_data(), epochs=params['epochs_per_fit'], verbose=2, ) tr_loss[epoch_cnt] = hist.history.get('loss')[-1] # predict once per peoch pred = model.predict_generator( generator=data_gen_val.generate(), steps=2 if params['quick_test'] else data_gen_val.get_total_batches_in_data(), verbose=2) sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5 doa_pred = evaluation_metrics.reshape_3Dto2D( pred[1] if params['doa_objective'] is 'mse' else pred[1][:, :, nb_classes:]) # Calculate the DCASE 2019 metrics - Detection-only and Localization-only scores sed_metric[epoch_cnt, :] = evaluation_metrics.compute_sed_scores( sed_pred, sed_gt, data_gen_val.nb_frames_1s()) doa_metric[ epoch_cnt, :] = evaluation_metrics.compute_doa_scores_regr_xyz( doa_pred, doa_gt, sed_pred, sed_gt) seld_metric[epoch_cnt] = evaluation_metrics.early_stopping_metric( sed_metric[epoch_cnt, :], doa_metric[epoch_cnt, :]) # Calculate the DCASE 2020 metrics - Location-aware detection and Class-aware localization scores cls_new_metric = SELD_evaluation_metrics.SELDMetrics( nb_classes=data_gen_val.get_nb_classes(), doa_threshold=params['lad_doa_thresh']) pred_dict = feat_cls.regression_label_format_to_output_format( sed_pred, doa_pred) gt_dict = feat_cls.regression_label_format_to_output_format( sed_gt, doa_gt) pred_blocks_dict = feat_cls.segment_labels(pred_dict, sed_pred.shape[0]) gt_blocks_dict = feat_cls.segment_labels(gt_dict, sed_gt.shape[0]) cls_new_metric.update_seld_scores_xyz(pred_blocks_dict, gt_blocks_dict) new_metric[epoch_cnt, :] = cls_new_metric.compute_seld_scores() new_seld_metric[ epoch_cnt] = evaluation_metrics.early_stopping_metric( new_metric[epoch_cnt, :2], new_metric[epoch_cnt, 2:]) # Visualize the metrics with respect to epochs plot_functions(unique_name, tr_loss, sed_metric, doa_metric, seld_metric, new_metric, new_seld_metric) patience_cnt += 1 if new_seld_metric[epoch_cnt] < best_seld_metric: best_seld_metric = new_seld_metric[epoch_cnt] best_epoch = epoch_cnt model.save(model_name) patience_cnt = 0 print( 'epoch_cnt: {}, time: {:0.2f}s, tr_loss: {:0.2f}, ' '\n\t\t DCASE2019 SCORES: ER: {:0.2f}, F: {:0.1f}, DE: {:0.1f}, FR:{:0.1f}, seld_score: {:0.2f}, ' '\n\t\t DCASE2020 SCORES: ER: {:0.2f}, F: {:0.1f}, DE: {:0.1f}, DE_F:{:0.1f}, seld_score (early stopping score): {:0.2f}, ' 'best_seld_score: {:0.2f}, best_epoch : {}\n'.format( epoch_cnt, time.time() - start, tr_loss[epoch_cnt], sed_metric[epoch_cnt, 0], sed_metric[epoch_cnt, 1] * 100, doa_metric[epoch_cnt, 0], doa_metric[epoch_cnt, 1] * 100, seld_metric[epoch_cnt], new_metric[epoch_cnt, 0], new_metric[epoch_cnt, 1] * 100, new_metric[epoch_cnt, 2], new_metric[epoch_cnt, 3] * 100, new_seld_metric[epoch_cnt], best_seld_metric, best_epoch)) if patience_cnt > params['patience']: break avg_scores_val.append([ new_metric[best_epoch, 0], new_metric[best_epoch, 1], new_metric[best_epoch, 2], new_metric[best_epoch, 3], best_seld_metric ]) print('\nResults on validation split:') print('\tUnique_name: {} '.format(unique_name)) print('\tSaved model for the best_epoch: {}'.format(best_epoch)) print('\tSELD_score (early stopping score) : {}'.format( best_seld_metric)) print('\n\tDCASE2020 scores') print( '\tClass-aware localization scores: DOA_error: {:0.1f}, F-score: {:0.1f}' .format(new_metric[best_epoch, 2], new_metric[best_epoch, 3] * 100)) print( '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}' .format(new_metric[best_epoch, 0], new_metric[best_epoch, 1] * 100)) print('\n\tDCASE2019 scores') print( '\tLocalization-only scores: DOA_error: {:0.1f}, Frame recall: {:0.1f}' .format(doa_metric[best_epoch, 0], doa_metric[best_epoch, 1] * 100)) print( '\tDetection-only scores: Error rate: {:0.2f}, F-score: {:0.1f}\n'. format(sed_metric[best_epoch, 0], sed_metric[best_epoch, 1] * 100)) # ------------------ Calculate metric scores for unseen test split --------------------------------- print( '\nLoading the best model and predicting results on the testing split' ) print('\tLoading testing dataset:') data_gen_test = cls_data_generator.DataGenerator( params=params, split=split, shuffle=False, per_file=params['dcase_output'], is_eval=True if params['mode'] is 'eval' else False) model = keras_model.load_seld_model('{}_model.h5'.format(unique_name), params['doa_objective']) pred_test = model.predict_generator( generator=data_gen_test.generate(), steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(), verbose=2) test_sed_pred = evaluation_metrics.reshape_3Dto2D(pred_test[0]) > 0.5 test_doa_pred = evaluation_metrics.reshape_3Dto2D( pred_test[1] if params['doa_objective'] is 'mse' else pred_test[1][:, :, nb_classes:]) if params['dcase_output']: # Dump results in DCASE output format for calculating final scores dcase_dump_folder = os.path.join( params['dcase_dir'], '{}_{}_{}'.format(task_id, params['dataset'], params['mode'])) cls_feature_class.create_folder(dcase_dump_folder) print('Dumping recording-wise results in: {}'.format( dcase_dump_folder)) test_filelist = data_gen_test.get_filelist() # Number of frames for a 60 second audio with 20ms hop length = 3000 frames max_frames_with_content = data_gen_test.get_nb_frames() # Number of frames in one batch (batch_size* sequence_length) consists of all the 3000 frames above with # zero padding in the remaining frames frames_per_file = data_gen_test.get_frame_per_file() for file_cnt in range(test_sed_pred.shape[0] // frames_per_file): output_file = os.path.join( dcase_dump_folder, test_filelist[file_cnt].replace('.npy', '.csv')) dc = file_cnt * frames_per_file output_dict = feat_cls.regression_label_format_to_output_format( test_sed_pred[dc:dc + max_frames_with_content, :], test_doa_pred[dc:dc + max_frames_with_content, :]) data_gen_test.write_output_format_file(output_file, output_dict) if params['mode'] is 'dev': test_data_in, test_data_out = data_gen_test.get_data_sizes() test_gt = collect_test_labels(data_gen_test, test_data_out, nb_classes, params['quick_test']) test_sed_gt = evaluation_metrics.reshape_3Dto2D(test_gt[0]) test_doa_gt = evaluation_metrics.reshape_3Dto2D(test_gt[1]) # Calculate DCASE2019 scores test_sed_loss = evaluation_metrics.compute_sed_scores( test_sed_pred, test_sed_gt, data_gen_test.nb_frames_1s()) test_doa_loss = evaluation_metrics.compute_doa_scores_regr_xyz( test_doa_pred, test_doa_gt, test_sed_pred, test_sed_gt) test_metric_loss = evaluation_metrics.early_stopping_metric( test_sed_loss, test_doa_loss) # Calculate DCASE2020 scores cls_new_metric = SELD_evaluation_metrics.SELDMetrics( nb_classes=data_gen_test.get_nb_classes(), doa_threshold=20) test_pred_dict = feat_cls.regression_label_format_to_output_format( test_sed_pred, test_doa_pred) test_gt_dict = feat_cls.regression_label_format_to_output_format( test_sed_gt, test_doa_gt) test_pred_blocks_dict = feat_cls.segment_labels( test_pred_dict, test_sed_pred.shape[0]) test_gt_blocks_dict = feat_cls.segment_labels( test_gt_dict, test_sed_gt.shape[0]) cls_new_metric.update_seld_scores_xyz(test_pred_blocks_dict, test_gt_blocks_dict) test_new_metric = cls_new_metric.compute_seld_scores() test_new_seld_metric = evaluation_metrics.early_stopping_metric( test_new_metric[:2], test_new_metric[2:]) avg_scores_test.append([ test_new_metric[0], test_new_metric[1], test_new_metric[2], test_new_metric[3], test_new_seld_metric ]) print('Results on test split:') print('\tDCASE2020 Scores') print( '\tClass-aware localization scores: DOA Error: {:0.1f}, F-score: {:0.1f}' .format(test_new_metric[2], test_new_metric[3] * 100)) print( '\tLocation-aware detection scores: Error rate: {:0.2f}, F-score: {:0.1f}' .format(test_new_metric[0], test_new_metric[1] * 100)) print('\tSELD (early stopping metric): {:0.2f}'.format( test_new_seld_metric)) print('\n\tDCASE2019 Scores') print( '\tLocalization-only scores: DOA Error: {:0.1f}, Frame recall: {:0.1f}' .format(test_doa_loss[0], test_doa_loss[1] * 100)) print( '\tDetection-only scores:Error rate: {:0.2f}, F-score: {:0.1f}' .format(test_sed_loss[0], test_sed_loss[1] * 100))