コード例 #1
0
    def fit(self,data,eps,MinPts):
        X = data
        n = X.shape[0]
        dist = computeEuclideanDistance(X)#distancematrix
        neighborhoods = [np.where(x<=eps)[0] for x in dist]#find all neighbourhoods within eps distance

        C = 0
        D = data
        n = D.shape[0]
        visited = [False]* n
        # labels = [None]*n
        labels = -np.ones(n)#initialise labels to all -1

        for index in range(0,n):
            if visited[index] == True:
                continue
            visited[index] = True
            NeighbourPts = self.regionQuery(index,eps,neighborhoods)

            if len(NeighbourPts) < MinPts:
                labels[index] = -1
            else:
                C += 1
                self.expandCluster(index,NeighbourPts,C,eps,MinPts,visited,labels,neighborhoods)
        return labels
コード例 #2
0
 def plotKnn(self,X,k):
     D = computeEuclideanDistance(X);
     sorted = np.sort(D)
     s = sorted[:,1:k]
     kDist =  np.sort(np.mean(s[:,1:4],axis = 1))
     objectId = np.arange(0,len(kDist))
     plt.plot(objectId,kDist)
     plt.show()