コード例 #1
0
ファイル: svhn_exp.py プロジェクト: gosky9/deepgini
def exp_nac(use_adv, t):
    input, layers, test, train, pred_test, true_test, pred_test_prob = gen_data(
        use_adv, deepxplore=True)
    rank_lst2 = None
    #可以贪心排
    #可以单个样本比较排
    #0 0.5 1
    ac = metrics.nac(test, input, layers, t=t)
    rate = ac.fit()
    rank_lst = ac.rank_fast(test)
    rank_lst2 = ac.rank_2(test)

    df = pd.DataFrame([])
    df['right'] = (pred_test == true_test).astype('int')
    df['cam'] = 0
    df['cam'].loc[rank_lst] = list(range(1, len(rank_lst) + 1))
    if rank_lst2 is not None:
        df['ctm'] = 0
        df['ctm'].loc[rank_lst2] = list(range(1, len(rank_lst2) + 1))
    if use_adv:
        dataset = 'svhn_adv'
    else:
        dataset = 'svhn'
    df['rate'] = rate

    df.to_csv('./output_svhn/{}_nac_t_{}.csv'.format(dataset, t))
コード例 #2
0
ファイル: exp_fashion.py プロジェクト: 853108389/deepgini
def exp_nac(model_name, use_adv, t):
    input, layers, test, train, pred_test, true_test, pred_test_prob = gen_data(
        model_name, use_adv=use_adv, deepxplore=True)

    # 可以贪心排
    # 可以单个样本比较排
    # 0 0.5 1
    ac = metrics.nac(test, input, layers, t=t)
    rate = ac.fit()
    start = time.time()
    rank_lst = ac.rank_fast(test)
    end = time.time()
    rank_lst_time = start - end

    start = time.time()
    rank_lst2 = ac.rank_2(test)
    end = time.time()
    rank_lst2_time = start - end

    df = pd.DataFrame([])

    df['right'] = (pred_test == true_test).astype('int')
    df['cam'] = 0
    df['ctm'] = 0
    df['cam'].loc[rank_lst] = list(range(1, len(rank_lst) + 1))
    df['cam_time'] = rank_lst_time
    df['ctm_time'] = rank_lst2_time
    if rank_lst2 is not None:
        df['ctm'].loc[rank_lst2] = list(range(1, len(rank_lst2) + 1))
    if use_adv:
        dataset = 'fashion_adv'
    else:
        dataset = 'fashion'
    df['rate'] = rate

    df.to_csv('./all_output/output_fashion/{}/{}_nac_t_{}.csv'.format(
        model_name, dataset, t))
コード例 #3
0
def exp(model,
        name,
        model_name,
        X_train,
        Y_train,
        X_test,
        Y_test,
        deep_metric,
        load_exist_table=True,
        **kwargs):
    pred_test_prob = model.predict(X_test)
    pred_test = np.argmax(pred_test_prob, axis=1)
    Y_test = np.argmax(Y_test, axis=1)
    rank_lst2 = None
    rank_lst = None
    rank_lst_time = None
    rank_lst2_time = None
    rate = 0
    if len(kwargs) != 0:
        params = "_" + "_".join(
            [str(k) + "_" + str(v) for k, v in kwargs.items()])
    else:
        params = ""
    path = './final_exp/res/{}/{}_{}_{}.csv'.format(name, name, model_name,
                                                    deep_metric + params)
    if load_exist_table:
        # 如果有文件就不要在做实验了
        if os.path.exists(path):
            print("load_exist_table")
            df = pd.read_csv(path, index_col=0)
            return df
    df = pd.DataFrame([])
    if deep_metric == "deepgini":
        rank_lst = metrics.deep_metric(pred_test_prob)
    elif deep_metric == "deepgini2" or deep_metric == "deepgini3":
        rank_lst, score = metrics.deep_metric2(pred_test_prob)
        df["score"] = score
    else:
        if deep_metric == "nac":
            input, layers, = get_layers(model,
                                        name,
                                        model_name,
                                        deepxplore=True)
        else:
            input, layers, = get_layers(model,
                                        name,
                                        model_name,
                                        deepxplore=False)
        if deep_metric == "nac":
            ac = metrics.nac(X_test, input, layers, t=kwargs["t"])
            rate = ac.fit()
            start = time.time()
            rank_lst = ac.rank_fast(X_test)
            end = time.time()
            rank_lst_time = start - end

            start = time.time()
            rank_lst2 = ac.rank_2(X_test)
            end = time.time()
            rank_lst2_time = start - end

        if deep_metric == 'kmnc':
            # 只能贪心排
            km = metrics.kmnc(X_train, input, layers, k_bins=kwargs["k"])
            start = time.time()
            rank_lst = km.rank_fast(X_test)
            end = time.time()
            rank_lst_time = start - end
            rate = km.fit(X_test)
        elif deep_metric == 'nbc':
            # 可以贪心排
            # 可以单个样本比较排
            # 0 0.5 1
            bc = metrics.nbc(X_train, input, layers, std=kwargs["std"])
            start = time.time()
            rank_lst = bc.rank_fast(X_test, use_lower=True)
            end = time.time()
            rank_lst_time = start - end
            start = time.time()
            rank_lst2 = bc.rank_2(X_test, use_lower=True)
            end = time.time()
            rank_lst2_time = start - end
            rate = bc.fit(X_test, use_lower=True)

        elif deep_metric == 'snac':
            # 可以贪心排
            # 可以单个样本比较排
            # 0 0.5 1
            bc = metrics.nbc(X_train, input, layers, std=kwargs["std"])
            start = time.time()
            rank_lst = bc.rank_fast(X_test, use_lower=False)
            end = time.time()
            rank_lst_time = start - end
            start = time.time()
            rank_lst2 = bc.rank_2(X_test, use_lower=False)
            end = time.time()
            rank_lst2_time = start - end
            rate = bc.fit(X_test, use_lower=False)
        elif deep_metric == 'tknc':
            # 只能贪心排
            # 1 2 3
            tk = metrics.tknc(X_test, input, layers, k=kwargs["k"])
            start = time.time()
            rank_lst = tk.rank(X_test)
            end = time.time()
            rank_lst_time = start - end
            rate = tk.fit(list(range(len(X_test))))
        elif deep_metric == 'lsc':
            label = np.argmax(Y_train, axis=1)
            st = time.time()  # 计算排序时间
            model = metrics.LSC(X_train,
                                label,
                                input, [layers[kwargs["index"]]],
                                u=100)
            rate = model.fit(X_test, pred_test)
            en = time.time()
            pre_time = st - en
            start = time.time()
            rank_lst2 = model.rank_2()
            end = time.time()
            rank_lst2_time = start - end + pre_time
            start = time.time()
            rank_lst = model.rank_fast()
            end = time.time()
            rank_lst_time = start - end + pre_time
        elif deep_metric == "dsc":
            label = np.argmax(Y_train, axis=1)
            st = time.time()  # 计算排序时间
            model = metrics.DSC(X_train, label, input, layers)
            rate = model.fit(X_test, pred_test)
            en = time.time()
            pre_time = st - en
            start = time.time()
            rank_lst2 = model.rank_2()
            end = time.time()
            rank_lst2_time = start - end + pre_time
            start = time.time()
            rank_lst = model.rank_fast()
            end = time.time()
            rank_lst_time = start - end + pre_time

    df['right'] = (pred_test == Y_test).astype('int')
    df['cam'] = 0
    df['ctm'] = 0
    df['cam_time'] = rank_lst_time
    df['ctm_time'] = rank_lst2_time
    if rank_lst is not None:
        df['cam'].loc[rank_lst] = list(range(1, len(rank_lst) + 1))
    if rank_lst2 is not None:
        df['ctm'].loc[rank_lst2] = list(range(1, len(rank_lst2) + 1))
    df['rate'] = rate

    if deep_metric == "random":
        df = df.sample(frac=1, random_state=41).reset_index()
    df.to_csv(path)
    return df