コード例 #1
0
def compute_ranks(feat_orders, gt_order, query_img_index, include_query=False):
    stat_indexes = []
    max_feats_len, min_feats_len = utils.max_min_length(feat_orders +
                                                        [gt_order])

    #prepare the axis for computing log-scale recall-at-k.
    log_base = 1.3
    logscale_ub = np.floor(math.log(max_feats_len, log_base))
    k_logscale_axis = np.floor(
        np.power(log_base, np.array(range(int(logscale_ub)))))
    k_logscale_axis = np.unique(k_logscale_axis)
    k_logscale_axis = k_logscale_axis.astype(int)

    feat_distances = utils.build_feat_dict(feat_orders,
                                           query_img_index,
                                           min_length=min_feats_len,
                                           include_query=include_query,
                                           cache_fld='DOP_cache_bis')
    gt_distance = utils.build_feat_dict([gt_order],
                                        query_img_index,
                                        min_length=min_feats_len,
                                        include_query=include_query,
                                        cache_fld='DOP_cache_bis')

    assert len(gt_distance) == 1, 'More than one Ground-Truth!'
    dist_gt, _, perm_gt = list(gt_distance.values())[0]

    for name, (dist, _, permut) in feat_distances.items():
        #calculate stats for every feature
        k_logscale = {
            k: recall_at(permut, perm_gt, k)
            for k in k_logscale_axis
        }

        norm_gt_similarities = 1 - (dist_gt / max(dist_gt))
        norm_similarities = 1 - (dist / max(dist))

        stat_indexes.append({
            'label':
            name,
            'kendall-tau':
            kendalltau(dist, dist_gt)[0],
            'spearmanr':
            spearmanr(dist, dist_gt)[0],
            'nDCG':
            metrics.ndcg_score(norm_gt_similarities, norm_similarities, 20),
            'recall-at-10':
            recall_at(permut, perm_gt, 10),
            'recall-at-100':
            recall_at(permut, perm_gt, 100),
            'recall-at-1000':
            recall_at(permut, perm_gt, 1000),
            'recall-at-k':
            dict(k_logscale)
        })

    return stat_indexes
コード例 #2
0
 def score(self, k=10):
     """
     Calculate mean NDCG for users in test
     """
     score = []
     for userId, df in self.test.gr_users:
         if userId in self.train.gr_users_pos.groups.keys():
             not_watched = tensor(self.train.not_liked_movies(userId),
                                  device=self.device)
             order = self.predict(userId,
                                  not_watched).argsort(descending=True)
             top = torch.take(not_watched, order).cpu().numpy()
             gain = df.set_index('movieId').loc[top, 'rating'].fillna(0)
             best = df.sort_values('rating')['rating']
             score.append(ndcg_score(best, gain, k=k))
     return np.mean(score)
コード例 #3
0
def scatterplot_methods_varying_beta(frame, store_path, metric_order):
    # Number of methods being plotted
    n = frame['method'].unique().shape[0]

    # Create the figure
    _ = plt.figure(figsize=(6, 3))

    frame['metric'] = pd.Categorical(frame['metric'], metric_order)

    f1 = frame.loc[frame['metric'].isin(
        ['tss_combined'])].sort_values('method')['val'].values.flatten()
    vals = []
    for metric in metric_order:
        f2 = frame.loc[frame['metric'].isin(
            [metric])].sort_values('method')['val'].values.flatten()
        # vals.append(weightedtau(f1, f2))
        vals.append(ndcg_score((f2 - min(f2)) / (max(f2) - min(f2)), f1))
        # print(("WT", weightedtau(f1.flatten(), f2.flatten())))
        # print(("Sp", spearmanr(f1.flatten(), f2.flatten())))

    plt.plot(range(len(vals)), vals, marker='o', linewidth=5, markersize=12)

    # Fix the y axis extent and labels
    plt.ylim([0, 1.05])
    plt.yticks(fontsize=14)
    # plt.ylabel('Weighted Kendall-Tau', fontsize=16)
    plt.ylabel('NDCG', fontsize=16)

    plt.xlabel(r'$\beta$', fontsize=16)
    plt.xticks(range(len(vals)), [
        r'$%s$' % e for e in [
            '0.0', '0.1', '0.2', '0.5', r'{\bf 1.0}', '2.0', '5.0', '10.0',
            '\infty'
        ]
    ],
               fontsize=14)

    # Add the legend
    # plt.legend(ncol=3)

    # Save the plot
    plt.savefig(store_path, bbox_inches='tight')
    plt.close()
コード例 #4
0
def test(net, test_seq):
    k_index = [3, 5, 10]
    net.eval()
    label = np.array([1, 0, 0, 0, 0] * 10)
    prec, ap, ndcg, rr_list = [[], [], []], [[], [], []], [[], [], []], []
    num_users = int(test_seq.shape[0] / 50)
    for i in range(num_users):
        score = F.softmax(net(test_seq[i * 50:(i + 1) * 50])[0],
                          dim=1)[:, 1].cpu().detach().numpy()
        ordered = sorted(zip(label, score), key=itemgetter(1), reverse=True)
        ordered_label = [i[0] for i in ordered]
        for (i, k) in zip(range(0, 3), k_index):
            prec[i].append(prec_score(ordered_label, k))
            ap[i].append(ap_score(ordered_label, k))
            ndcg[i].append(ndcg_score(ordered_label, k))
        rr_list.append(1 + ordered_label.index(1))
    rr = np.mean(1 / np.array(rr_list))
    result = [np.mean(v)
              for v in prec] + [np.mean(v)
                                for v in ap] + [np.mean(v)
                                                for v in ndcg] + [rr]
    net.train()
    return result
コード例 #5
0
 def run_evaluation(self, model, data_iter, k_vals=None, max_grade=2):
     """Run inference with the model and compute performance metrics."""
     if k_vals is None:
         k_vals = []
     sum_ndcg_at_k = [0.0 for _ in range(len(k_vals))]
     sum_err_at_k = [0.0 for _ in range(len(k_vals))]
     sample_count = 0
     for _, batch in enumerate(data_iter):
         labels = batch[1]
         features = batch[2]
         for lbls, scrs in zip(
                 labels.cpu().numpy(),
                 model.forward(features).cpu().detach().numpy()):
             sum_ndcg_at_k = list(
                 map(operator.add, sum_ndcg_at_k,
                     [metrics.ndcg_score(lbls, scrs, k=k) for k in k_vals]))
             sum_err_at_k = list(
                 map(operator.add, sum_err_at_k, [
                     metrics.err(lbls, scrs, k=k, max_grade=max_grade)
                     for k in k_vals
                 ]))
             sample_count += 1
     return [x / sample_count for x in sum_ndcg_at_k
             ], [x / sample_count for x in sum_err_at_k]
コード例 #6
0
def rank_users(users):
    global fact_to_words
    print("Creating nodes")
    user_to_links, user_to_weight = get_user_edges(users)
    X_train, X_test, y_train, y_test = train_test_split(
        user_to_links, user_to_weight)

    print("Building graph..")
    G = build_graph(user_to_links, user_to_weight)
    graph_plot(G)

    pr = nx.pagerank(G)

    pr_cred_users = {u: v for u, v in list(pr.items()) if u in user_to_links}
    # print(sorted([(v,y[1]) for u,v in pr_cred_users.items() for y in user_to_weight if u == y[0]], reverse=True, key=lambda x: x[0]))

    pred = get_ranks(X_test, G, pr)
    print(
        sorted(np.asarray([e for e in zip(pred, [y[1] for y in y_test])]),
               reverse=True,
               key=lambda x: x[0]))

    ndgc = ndcg_score([y[1] for y in y_test], pred)
    print("NDCG: {}".format(ndgc))
コード例 #7
0
def score_classifier(clf, X_test, y_test):
    """ Given a classifier clf, and a Test set (X_test, y_test),
    It scores it by returning its NDCG@5 score"""
    probabilities = clf.predict_proba(X_test)
    return ndcg_score(y_test, probabilities, k=5)
コード例 #8
0
def eval():

    # Algorithm:
    # Pick N random samples from query.txt
    # Get top 10 results from bool query for each rnd query
    # Get top 10 results from vector query for each rnd query
    # Compute NDCG btn bool query results and qrels.txt
    # Compute NDCG btn vector query results and qrels.txt
    # Get p-value btn bool and vector

    # Get the query collection
    qc = loadCranQry(query_path)
    poss_queries = list(qc)

    # Load up the inverted index
    ii = InvertedIndex()
    ii.load(index_file)

    # Load up the document collection
    cf = CranFile("cran.all")

    # Get ground-truth results from qrels.txt
    with open(qrels_path) as f:
        qrels = f.readlines()

    # Index qrels into a dict
    qrel_dict = {}
    for qrel in qrels:
        qrel_split = qrel.split()
        if int(qrel_split[0]) in qrel_dict:
            qrel_dict[int(qrel_split[0])].append(int(qrel_split[1]))
        else:
            qrel_dict[int(qrel_split[0])] = [int(qrel_split[1])]

    # Run over N random queries, collecting NDCGs
    bool_ndcgs = []
    vector_ndcgs = []
    for _ in range(n):
        # Get random query ID
        query_id = choice(poss_queries)

        # Get the query
        if 0 < int(query_id) < 10:
            query_id = '00' + str(int(query_id))
        elif 9 < int(query_id) < 100:
            query_id = '0' + str(int(query_id))
        try:
            query = qc[query_id].text
        except KeyError:
            print("Invalid query id", query_id)
            return

        # Initialize the query processor
        qp = QueryProcessor(query, ii, cf)

        # Run bool query
        bool_result = qp.booleanQuery()[:10]

        # Run vector query
        vector_result = qp.vectorQuery(10)

        # Pull top 10 ground-truth results from qrels dict
        gt_results = qrel_dict[poss_queries.index(query_id) + 1][:10]

        # Compute NDCG for bool query
        # NOTE: There is no weighting on the bool query, so give all an even 1
        truth_vector = list(map(lambda x: x in gt_results, bool_result))
        bool_ndcg = ndcg_score(truth_vector, [1] * len(truth_vector),
                               k=len(truth_vector))

        # Compute NDCG for vector query
        vector_docs = []
        vector_scores = []
        for v in vector_result:
            vector_docs.append(v[0])
            vector_scores.append(v[1])
        truth_vector = list(map(lambda x: x in gt_results, vector_docs))
        vector_ndcg = ndcg_score(truth_vector,
                                 vector_scores,
                                 k=len(truth_vector))

        # Accumulate NDCGs
        bool_ndcgs.append(bool_ndcg)
        vector_ndcgs.append(vector_ndcg)

    # Average out score lists
    bool_avg = 0
    for bool in bool_ndcgs:
        bool_avg += bool
    bool_avg /= len(bool_ndcgs)

    vector_avg = 0
    for vector in vector_ndcgs:
        vector_avg += vector
    vector_avg /= len(vector_ndcgs)

    # Present averages and p-values
    print("Boolean NDCG average:", bool_avg)
    print("Vector NDCG average:", vector_avg)
    if n > 19:
        print("Wilcoxon p-value:", wilcoxon(bool_ndcgs, vector_ndcgs).pvalue)
    else:
        print("Wilcoxon p-value: Sample size too small to be significant")
    print("T-Test p-value:", ttest_ind(bool_ndcgs, vector_ndcgs).pvalue)
コード例 #9
0
def eval(testOn):
    k = 10  # k the number of top k pairs of (docID, similarity) to get from vectorQuery
    dictQ_ID = []
    indexFile = sys.argv[1]  #v "src/Data/tempFile"
    queryText = sys.argv[2]
    qrelsText = sys.argv[3]
    dictOfQuery = {}
    dictQrelsText = {}
    docCollection = CranFile('./CranfieldDataset/cran.all')
    NDCGScoreBool = []
    numberOfQueries = int(sys.argv[4])
    NDCGScoreVector = []
    #indexFile           = "src/Data/tempFile"
    #queryText           = 'src/CranfieldDataset/query.text'
    #qrelsText           = 'src/CranfieldDataset/qrels.text'
    #numberOfQueries     = 50
    numberOfTimeToLoop = 5

    #Loads Files
    listOfQueryRelsMaping = readFile(qrelsText)
    queryFile = loadCranQry(queryText)

    #Data Need
    for i in range(numberOfTimeToLoop):

        #Get random Queiry
        dictOfQuery = getRandomQuery(queryFile, numberOfQueries)
        if testOn:
            assert len(dictOfQuery
                       ) == numberOfQueries, "Error are getting random query"

        # Return all query
        # dictOfQuery = getAllDataItems(queryFile)
        # if testOn:
        #     assert len(dictOfQuery) == 225, "Error are getting random query"

        #get list of Query result from qrel.txt
        dictQrelsText = getResultsFrom_QrelsFile(listOfQueryRelsMaping,
                                                 dictOfQuery)
        if testOn:
            assert len(dictQrelsText
                       ) == numberOfQueries, "Error number Of Queries to large"

        start = timer()
        queryProcessor = QueryProcessor(
            "", indexFile,
            docCollection.docs)  # This is an extremely expensive process\
        end = timer()

        if testOn:
            print("Time for creating QueryProcessor:", end - start)
        countDoc = 0
        start = timer()

        dictQ_ID = []
        for qid, queryText in dictOfQuery.items():
            countDoc += 1

            dictQ_ID.append(qid)

            if testOn:
                print("QID:", qid)
            start = timer()
            queryProcessor.loadQuery(queryText)
            end = timer()
            if testOn:
                print("Time for Load:", end - start)
                print("qrels: ", dictQrelsText[qid])

            start = timer()
            docIDs = queryProcessor.booleanQuery(
            )  # data would need to be like this [12, 14, 78, 141, 486, 746, 172, 573, 1003]
            #docIDs_1 = queryProcessor.booleanQuery_1()
            end = timer()
            if testOn:
                print("Time for booleanQuery:", end - start)

            start = timer()
            listOfDocIDAndSimilarity = queryProcessor.vectorQuery(
                k
            )  # data need to look like k=3 [[625,0.8737006126353902],[401,0.8697643788341478],[943,0.8424991316663082]]
            #vectorQueryDict[qid] = dictOfDocIDAndSimilarity
            end = timer()
            if testOn:
                print("Time for vectorQuery:", end - start)
                print("booleanQuery:", docIDs)

            #For Boolean part
            start = timer()
            yTrue = []
            yScore = []
            for docID in docIDs:
                yScore.append(1)
                if docID in dictQrelsText[qid]:
                    yTrue.append(1)
                else:
                    yTrue.append(0)
            yTrue.sort(reverse=True)
            score = metrics.ndcg_score(yTrue[:k], yScore[:k], k, "exponential")
            if math.isnan(score):
                NDCGScoreBool.append(0)
            else:
                NDCGScoreBool.append(score)
            end = timer()
            if testOn:
                print("Time for  Boolean ndcg:", end - start)

            #For Vector part
            start = timer()
            yTrue = []
            yScore = []
            if testOn:
                print("vectorQuery:", listOfDocIDAndSimilarity)
            for docID_Score in listOfDocIDAndSimilarity:
                yScore.append(float(docID_Score[1]))
                if docID_Score[0] in dictQrelsText[qid]:
                    yTrue.append(1)
                else:
                    yTrue.append(0)
            yTrue.sort(reverse=True)
            score = metrics.ndcg_score(yTrue[:k], yScore[:k], k, "exponential")
            if math.isnan(score):
                NDCGScoreVector.append(0)
            else:
                NDCGScoreVector.append(score)
            end = timer()
            if testOn:
                print("Time for  Vector ndcg:", end - start)
        print("\nRunning Querys iteration:(", str(i + 1), ")\n", dictQ_ID)

        if testOn:
            for QID, boolScore, vectorScore in zip(dictQ_ID, NDCGScoreBool,
                                                   NDCGScoreVector):
                print("QID", QID, "Boolean Model:", boolScore, "Vector Model",
                      vectorScore)

    print("\nThe Length Of Both NDCG Score is: ", len(NDCGScoreBool), "==",
          len(NDCGScoreVector))

    print('\nThe Avg NDCG Score')
    vectorAvg = avg(NDCGScoreVector)
    BoolAvg = avg(NDCGScoreBool)
    print("Avg NDCG Score for Bool:", BoolAvg, "\nAvg NDCG Score for Vector:",
          vectorAvg)
    end = timer()
    if testOn:
        print("\n\nTime for running ", countDoc, " queries:", end - start)

    print('\nThe P-Value')
    p_va_ttest = stats.ttest_ind(NDCGScoreBool, NDCGScoreVector)
    p_va_wilcoxon = stats.wilcoxon(NDCGScoreBool, NDCGScoreVector)
    print("T-Test P-value: ", p_va_ttest)
    print("Wilcoxon P-value: ", p_va_wilcoxon)
    print('Done')
コード例 #10
0
def eval(indexfilename, queryfilename, queryrefilename, numberofrandomqueries):

    # ToDo
    actual = []
    #
    if numberofrandomqueries > 225:
        raise Exception('please enter query count less than or equal to 225')
    qrys = loadCranQry("query.text")
    validqueries = []
    querycounter = 0
    for q in qrys:
        validqueries.append(int(q))

    loadiindex = InvertedIndex()
    loadiindex = loadiindex.load("index_file.pickle")
    #    print("index loaded")
    cf = CranFile('cran.all')
    #QueryProcessor.numberofresult =10
    #qp = QueryProcessor(qrys,loadiindex,cf.docs,10)
    queryRelevence = dict()
    for line in open(queryrefilename):

        fields = line.split(" ")
        fields[0] = '%0*d' % (3, int(fields[0]))
        if fields[0] in queryRelevence:
            # and let's extract the data:
            queryRelevence[fields[0]].append(fields[1])
        else:
            # create a new array in this slot
            queryRelevence[fields[0]] = [fields[1]]
    replacecounter = 0
    queryRelevenceUpdated = {}
    for k in queryRelevence:

        queryRelevenceUpdated['%0*d' % (3, int(
            validqueries[replacecounter]))] = queryRelevence.get(k)
        replacecounter = replacecounter + 1

#  relevent = list(queryRelevence.keys())
# relevent = list(map(int, relevent))
#samplespace = np.intersect1d(relevent, validqueries)
    list_of_random_items = random.sample(validqueries, numberofrandomqueries)
    tempcounter2 = 0
    booleanndcg = []
    vectorndcg = []

    while tempcounter2 < numberofrandomqueries:

        list_of_random_items[tempcounter2] = '%0*d' % (
            3, int(list_of_random_items[tempcounter2]))
        print('query for which ndcg is calculated ' +
              str(list_of_random_items[tempcounter2]))
        y = str(list_of_random_items[tempcounter2])
        vectorresult = query(indexfilename, '1', queryfilename,
                             str(list_of_random_items[tempcounter2]), 10)
        #       vectorresult = ['573', '51', '944', '878', '12', '486', '875', '879', '746', '665']
        #       print(vectorresult)
        tempcounter = 0
        for z in vectorresult:

            if z in queryRelevenceUpdated[str(
                    list_of_random_items[tempcounter2])]:
                vectorresult[tempcounter] = 1
            else:
                vectorresult[tempcounter] = 0

            tempcounter = tempcounter + 1
        #print(vectorresult)
        idealvectorresult = vectorresult.copy()
        idealvectorresult.sort(reverse=True)
        #print(idealvectorresult)
        if sum(idealvectorresult) == 0:
            ndcgscore = 0
        else:
            ndcgscore = ndcg_score(idealvectorresult, vectorresult)
    # print(ndcgscore)
        vectorndcg.append(ndcgscore)
        tempcounter3 = 0

        booleanqueryresult = query(indexfilename, '0', queryfilename,
                                   str(list_of_random_items[tempcounter2]), 10)
        #booleanqueryresult = ['462','462','462','462','462','462','462','462','462']
        booleanquery = booleanqueryresult.copy()
        for g in booleanquery:

            if g in queryRelevenceUpdated[str(
                    list_of_random_items[tempcounter2])]:
                booleanquery[tempcounter3] = 1
            else:
                booleanquery[tempcounter3] = 0

            tempcounter3 = tempcounter3 + 1
        #print(booleanquery)
        tempcounter4 = len(booleanquery)
        while tempcounter4 < 10:
            booleanquery.append(0)
            tempcounter4 = tempcounter4 + 1
        idealbooleanresult = []
        for i in range(0, 10):
            if i < len(queryRelevenceUpdated[str(
                    list_of_random_items[tempcounter2])]):
                idealbooleanresult.append(1)
            else:
                idealbooleanresult.append(0)

        idealbooleanresult.sort(reverse=True)
        if sum(booleanquery) == 0:
            ndcgscoreboolean = 0
        else:
            ndcgscoreboolean = ndcg_score(booleanquery, idealbooleanresult)
        booleanndcg.append(ndcgscoreboolean)
        tempcounter2 = tempcounter2 + 1
    print('P value for all the queries processed is:')
    print(
        scipy.stats.wilcoxon(vectorndcg,
                             booleanndcg,
                             zero_method='wilcox',
                             correction=False))
    print('Done')
コード例 #11
0
ファイル: run.py プロジェクト: wuch15/PLM4NewsRec
def test(args):

    if args.enable_hvd:
        import horovod.torch as hvd

    hvd_size, hvd_rank, hvd_local_rank = utils.init_hvd_cuda(
        args.enable_hvd, args.enable_gpu)

    if args.load_ckpt_name is not None:
        #TODO: choose ckpt_path
        ckpt_path = utils.get_checkpoint(args.model_dir, args.load_ckpt_name)
    else:
        ckpt_path = utils.latest_checkpoint(args.model_dir)

    assert ckpt_path is not None, 'No ckpt found'
    checkpoint = torch.load(ckpt_path)

    if 'subcategory_dict' in checkpoint:
        subcategory_dict = checkpoint['subcategory_dict']
    else:
        subcategory_dict = {}

    category_dict = checkpoint['category_dict']
    word_dict = checkpoint['word_dict']
    domain_dict = checkpoint['domain_dict']
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    config = AutoConfig.from_pretrained("bert-base-uncased",
                                        output_hidden_states=True)
    bert_model = AutoModel.from_pretrained("bert-base-uncased", config=config)
    model = ModelBert(args, bert_model, len(category_dict), len(domain_dict),
                      len(subcategory_dict))

    if args.enable_gpu:
        model.cuda()

    model.load_state_dict(checkpoint['model_state_dict'])
    logging.info(f"Model loaded from {ckpt_path}")

    if args.enable_hvd:
        hvd.broadcast_parameters(model.state_dict(), root_rank=0)

    model.eval()
    torch.set_grad_enabled(False)

    news, news_index, category_dict, domain_dict, subcategory_dict = read_news_bert(
        os.path.join(args.root_data_dir,
                     f'{args.market}/{args.test_dir}/news.tsv'), args,
        tokenizer)

    news_title, news_title_type, news_title_attmask, \
    news_abstract, news_abstract_type, news_abstract_attmask, \
    news_body, news_body_type, news_body_attmask, \
    news_category, news_domain, news_subcategory = get_doc_input_bert(
        news, news_index, category_dict, domain_dict, subcategory_dict, args)

    news_combined = np.concatenate([
    x for x in
    [news_title, news_title_type, news_title_attmask, \
    news_abstract, news_abstract_type, news_abstract_attmask, \
    news_body, news_body_type, news_body_attmask, \
    news_category, news_domain, news_subcategory]
    if x is not None], axis=1)

    class NewsDataset(Dataset):
        def __init__(self, data):
            self.data = data

        def __getitem__(self, idx):
            return self.data[idx]

        def __len__(self):
            return self.data.shape[0]

    def news_collate_fn(arr):
        arr = torch.LongTensor(arr)
        return arr

    news_dataset = NewsDataset(news_combined)
    news_dataloader = DataLoader(news_dataset,
                                 batch_size=args.batch_size * 4,
                                 num_workers=args.num_workers,
                                 collate_fn=news_collate_fn)

    news_scoring = []
    with torch.no_grad():
        for input_ids in tqdm(news_dataloader):
            input_ids = input_ids.cuda()
            news_vec = model.news_encoder(input_ids)
            news_vec = news_vec.to(torch.device("cpu")).detach().numpy()
            news_scoring.extend(news_vec)

    news_scoring = np.array(news_scoring)

    logging.info("news scoring num: {}".format(news_scoring.shape[0]))

    dataloader = DataLoaderTest(
        news_index=news_index,
        news_scoring=news_scoring,
        word_dict=word_dict,
        news_bias_scoring=None,
        data_dir=os.path.join(args.root_data_dir,
                              f'{args.market}/{args.test_dir}'),
        filename_pat=args.filename_pat,
        args=args,
        world_size=hvd_size,
        worker_rank=hvd_rank,
        cuda_device_idx=hvd_local_rank,
        enable_prefetch=True,
        enable_shuffle=False,
        enable_gpu=args.enable_gpu,
    )

    from metrics import roc_auc_score, ndcg_score, mrr_score, ctr_score

    AUC = []
    MRR = []
    nDCG5 = []
    nDCG10 = []

    def print_metrics(hvd_local_rank, cnt, x):
        logging.info("[{}] Ed: {}: {}".format(hvd_local_rank, cnt, \
            '\t'.join(["{:0.2f}".format(i * 100) for i in x])))

    def get_mean(arr):
        return [np.array(i).mean() for i in arr]

    #for cnt, (log_vecs, log_mask, news_vecs, news_bias, labels) in enumerate(dataloader):

    for cnt, (log_vecs, log_mask, news_vecs, news_bias,
              labels) in enumerate(dataloader):
        his_lens = torch.sum(log_mask,
                             dim=-1).to(torch.device("cpu")).detach().numpy()

        if args.enable_gpu:
            log_vecs = log_vecs.cuda(non_blocking=True)
            log_mask = log_mask.cuda(non_blocking=True)

        user_vecs = model.user_encoder(log_vecs, log_mask).to(
            torch.device("cpu")).detach().numpy()

        for index, user_vec, news_vec, bias, label, his_len in zip(
                range(len(labels)), user_vecs, news_vecs, news_bias, labels,
                his_lens):

            if label.mean() == 0 or label.mean() == 1:
                continue

            score = np.dot(news_vec, user_vec)

            auc = roc_auc_score(label, score)
            mrr = mrr_score(label, score)
            ndcg5 = ndcg_score(label, score, k=5)
            ndcg10 = ndcg_score(label, score, k=10)

            AUC.append(auc)
            MRR.append(mrr)
            nDCG5.append(ndcg5)
            nDCG10.append(ndcg10)

        if cnt % args.log_steps == 0:

            print_metrics(hvd_rank, cnt * args.batch_size,
                          get_mean([AUC, MRR, nDCG5, nDCG10]))

    # stop scoring
    dataloader.join()

    for i in range(2):
        print_metrics(hvd_rank, cnt * args.batch_size,
                      get_mean([AUC, MRR, nDCG5, nDCG10]))
コード例 #12
0
def test(rank, args):
    if rank is None:
        is_distributed = False
        rank = 0
    else:
        is_distributed = True

    if is_distributed:
        utils.setuplogger()
        dist.init_process_group('nccl',
                                world_size=args.nGPU,
                                init_method='env://',
                                rank=rank)

    torch.cuda.set_device(rank)

    if args.load_ckpt_name is not None:
        ckpt_path = utils.get_checkpoint(args.model_dir, args.load_ckpt_name)

    assert ckpt_path is not None, 'No checkpoint found.'
    checkpoint = torch.load(ckpt_path, map_location='cpu')

    subcategory_dict = checkpoint['subcategory_dict']
    category_dict = checkpoint['category_dict']
    word_dict = checkpoint['word_dict']

    dummy_embedding_matrix = np.zeros(
        (len(word_dict) + 1, args.word_embedding_dim))
    module = importlib.import_module(f'model.{args.model}')
    model = module.Model(args, dummy_embedding_matrix, len(category_dict),
                         len(subcategory_dict))
    model.load_state_dict(checkpoint['model_state_dict'])
    logging.info(f"Model loaded from {ckpt_path}")

    if args.enable_gpu:
        model.cuda(rank)

    model.eval()
    torch.set_grad_enabled(False)

    news, news_index = read_news(os.path.join(args.test_data_dir, 'news.tsv'),
                                 args,
                                 mode='test')
    news_title, news_category, news_subcategory = get_doc_input(
        news, news_index, category_dict, subcategory_dict, word_dict, args)
    news_combined = np.concatenate([
        x
        for x in [news_title, news_category, news_subcategory] if x is not None
    ],
                                   axis=-1)

    news_dataset = NewsDataset(news_combined)
    news_dataloader = DataLoader(news_dataset,
                                 batch_size=args.batch_size,
                                 num_workers=4)

    news_scoring = []
    with torch.no_grad():
        for input_ids in tqdm(news_dataloader):
            input_ids = input_ids.cuda(rank)
            news_vec = model.news_encoder(input_ids)
            news_vec = news_vec.to(torch.device("cpu")).detach().numpy()
            news_scoring.extend(news_vec)

    news_scoring = np.array(news_scoring)
    logging.info("news scoring num: {}".format(news_scoring.shape[0]))

    if rank == 0:
        doc_sim = 0
        for _ in tqdm(range(1000000)):
            i = random.randrange(1, len(news_scoring))
            j = random.randrange(1, len(news_scoring))
            if i != j:
                doc_sim += np.dot(news_scoring[i], news_scoring[j]) / (
                    np.linalg.norm(news_scoring[i]) *
                    np.linalg.norm(news_scoring[j]))
        logging.info(f'News doc-sim: {doc_sim / 1000000}')

    data_file_path = os.path.join(args.test_data_dir, f'behaviors_{rank}.tsv')

    def collate_fn(tuple_list):
        log_vecs = torch.FloatTensor([x[0] for x in tuple_list])
        log_mask = torch.FloatTensor([x[1] for x in tuple_list])
        news_vecs = [x[2] for x in tuple_list]
        labels = [x[3] for x in tuple_list]
        return (log_vecs, log_mask, news_vecs, labels)

    dataset = DatasetTest(data_file_path, news_index, news_scoring, args)
    dataloader = DataLoader(dataset,
                            batch_size=args.batch_size,
                            collate_fn=collate_fn)

    from metrics import roc_auc_score, ndcg_score, mrr_score

    AUC = []
    MRR = []
    nDCG5 = []
    nDCG10 = []

    def print_metrics(rank, cnt, x):
        logging.info("[{}] {} samples: {}".format(
            rank, cnt, '\t'.join(["{:0.2f}".format(i * 100) for i in x])))

    def get_mean(arr):
        return [np.array(i).mean() for i in arr]

    def get_sum(arr):
        return [np.array(i).sum() for i in arr]

    local_sample_num = 0

    for cnt, (log_vecs, log_mask, news_vecs, labels) in enumerate(dataloader):
        local_sample_num += log_vecs.shape[0]

        if args.enable_gpu:
            log_vecs = log_vecs.cuda(rank, non_blocking=True)
            log_mask = log_mask.cuda(rank, non_blocking=True)

        user_vecs = model.user_encoder(log_vecs, log_mask).to(
            torch.device("cpu")).detach().numpy()

        for user_vec, news_vec, label in zip(user_vecs, news_vecs, labels):
            if label.mean() == 0 or label.mean() == 1:
                continue

            score = np.dot(news_vec, user_vec)

            auc = roc_auc_score(label, score)
            mrr = mrr_score(label, score)
            ndcg5 = ndcg_score(label, score, k=5)
            ndcg10 = ndcg_score(label, score, k=10)

            AUC.append(auc)
            MRR.append(mrr)
            nDCG5.append(ndcg5)
            nDCG10.append(ndcg10)

        if cnt % args.log_steps == 0:
            print_metrics(rank, local_sample_num,
                          get_mean([AUC, MRR, nDCG5, nDCG10]))

    logging.info('[{}] local_sample_num: {}'.format(rank, local_sample_num))
    if is_distributed:
        local_sample_num = torch.tensor(local_sample_num).cuda(rank)
        dist.reduce(local_sample_num, dst=0, op=dist.ReduceOp.SUM)
        local_metrics_sum = torch.FloatTensor(
            get_sum([AUC, MRR, nDCG5, nDCG10])).cuda(rank)
        dist.reduce(local_metrics_sum, dst=0, op=dist.ReduceOp.SUM)
        if rank == 0:
            print_metrics('*', local_sample_num,
                          local_metrics_sum / local_sample_num)
    else:
        print_metrics('*', local_sample_num,
                      get_mean([AUC, MRR, nDCG5, nDCG10]))
コード例 #13
0
def to_ndcg(qrels, q_text, idx_file, tk=10, n=2):
    column_names = ['qid', 'docid', 'bool_rel', 'vec_rel'
                    ]  #for creating a dataframe for easier data manupilation
    #df_qrels = pd.read_csv('../CranfieldDataset/qrels.text', names=column_names, sep=' ')   #can test by hard-coding
    df_qrels = pd.read_csv('../CranfieldDataset/qrels.sample',
                           names=column_names,
                           sep=' ')  #can test by hard-coding
    #df_qrels = pd.read_csv(qrels, names=column_names, sep=' ')
    #print df_qrels

    unique_qids = list(set(list(df_qrels.qid.values)))
    random.shuffle(unique_qids)
    random_qids = unique_qids[0:n]

    qrys = cranqry.loadCranQry('../CranfieldDataset/query.text'
                               )  #qrys is a dict---for hard-coded testing
    #qrys =  cranqry.loadCranQry(q_text)  #qrys is a dict

    qrys_ids = [key for key, val in qrys.iteritems()]

    II = index.InvertedIndex()
    index_file = II.load("index_file.json")  #for hard-coded testing
    #index_file = II.load(idx_file)

    vec_agg_ndcg, bool_agg_ndcg = list(), list(
    )  #for storing aggregate ndcg scores
    for qid in random_qids:
        print qid
        df_qid = df_qrels[
            df_qrels["qid"] ==
            qid]  #dataframe for one query id---comparison of an integer qid in a string qid

        qid_docids = list(
            df_qid['docid']
        )  #list of doc ids for a randomly chosen query id from qrels.text---to be used for ndcg_score
        print qid_docids

        st_qid = str(
            qid
        )  #very important----the decimal number in random_qids should be matched the octal numbers in the cranfield dataset

        if len(st_qid) == 1:  #for handing decimal to octal qid conversion
            st_qid = "00" + st_qid
        elif len(st_qid) == 2:
            st_qid = "0" + st_qid
        else:
            st_qid = st_qid

        if st_qid in qrys_ids:
            qp = QueryProcessor(qrys[st_qid].text, index_file, 'cran.all')

            bool_array = qp.booleanQuery()
            vec_array = qp.vectorQuery(10)  #change back to 'tk'
            print bool_array
            bool_array = [int(v) for v in bool_array]
            print bool_array
            #ndcg for boolean model
            bool_list = [(0, 0)] * 10  #change back to tk

            idx = 0
            for doc_id in bool_array:
                if doc_id in qid_docids:  #iteratively check if a docid returned by the vector model is present in qrels.text for the specific query(qid)
                    #y_true[idx] = 1
                    bool_list[idx] = (1, 1)
                    idx += 1
                else:
                    bool_list[idx] = (0, 1)
                if idx == 10:
                    break
            #print bool_list

            y_true = [int(bool_id[0]) for bool_id in bool_list]
            y_score = [int(bool_id[1]) for bool_id in bool_list]
            print "bool", y_true
            print "bool", y_score

            bool_agg_ndcg.append(metrics.ndcg_score(y_true, y_score, 10))

            #ndcg for vector model
            print vec_array
            y_score = [
                vec_id[1] for vec_id in vec_array
            ]  #y_score--to be passed to ndcg_score is the list of cosine similarity scores
            vec_ids = [
                int(vec_id[0]) for vec_id in vec_array
            ]  #list of docids from the list of tuples of the form (docid, similarity_score)
            #print vec_ids
            y_true = [0] * 10  ##added on 0317---change back to tk
            idx = 0
            for doc_id in vec_ids:
                if doc_id in qid_docids:  #iteratively check if a docid returned by the vector model is present in qrels.text for the specific query(qid)
                    y_true[idx] = 1
                    idx += 1
            print "vec", y_true
            print "vec", y_score
            vec_agg_ndcg.append(metrics.ndcg_score(y_true, y_score, 10))

            del qp  ##garbage collection

    return bool_agg_ndcg, vec_agg_ndcg
コード例 #14
0
def eval(index_file, query_file, qrels_File, number_of_queries):
    #read queryfile,indexfile
    # ToDo
    queries = loadCranQry(query_file)
    queries_id_list = [str(int(x)) for x in queries.keys()]
    #print(queries_id_list)
    #read querls.txt
    qrels_dict = process_querls_file(qrels_File, queries_id_list)
    inputdocument = cran.CranFile("cran.all")
    # load the index file saved at from part 1
    index = InvertedIndex().load(index_file)
    qp = QueryProcessor(queries, index, inputdocument, number_of_queries)
    queries_id_list_int = [int(x) for x in qrels_dict.keys()]
    queries_id_ls = [int(x) for x in queries.keys()]
    #IdeaVectorsforQuery_ids={}
    sumbooleanNADC = []
    sumvectorNADC = []
    with open('Evaluation_search.csv', 'w') as f:
        f.write("%s,%s,%s,%s\n" % ("Iteration", "AverageNDCG-booleanModel",
                                   "AverageNDCG-vectorModel", "P-value"))
        for i in range(0, 5):
            vectorNADC = []
            booleanNADC = []
            intersection_queries = list(
                set(queries_id_list_int) & set(queries_id_ls))
            random_query_id_list = random.sample(queries_id_list_int,
                                                 number_of_queries)
            #random_query_id_list=[153, 18]
            #print(random_query_id_list)
            for q_id in random_query_id_list:
                print("Processing for Query ID ::", q_id)
                qp.querynumber = q_id
                #boolean_res=qp.booleanQuery()
                vector_top3 = qp.vectorQuery(5)
                #vector_top3=[('12',0.34),('746',0.33),('875',0.24)]
                #print(boolean_res)
                print("Output for Vector Model Result::", vector_top3)
                if (vector_top3.__len__() < 1):
                    vectorNADC.append(0)
                else:
                    vector_label = [x[0] for x in vector_top3]
                    score = [x[1] for x in vector_top3]
                    print("DocumentIDs of Vector Model Result:: ",
                          vector_label)
                    print("Scores of Vector Model Result::", score)
                    true_label = vector_label.copy()
                    query_id = str(q_id)
                    for x in vector_label:
                        #str_x="{0:0=3d}".format(x)
                        ind = vector_label.index(x)
                        if (x in qrels_dict.get(query_id)):
                            true_label[ind] = 1
                        else:
                            true_label[ind] = 0
                    if true_label.__len__() < 5:
                        len_val = 10 - (true_label.__len__())
                        true_label.extend([0] * len_val)
                    print("Actual Vector:: ", true_label)
                    print("Predicted Vector:: ", score)
                    if sum(true_label) == 0:
                        vectorNADC.append(0)
                    else:
                        ndcg = metrics.ndcg_score(true_label, score, 5)
                        print("Calculated ndcg for Vector::", ndcg)
                        vectorNADC.append(ndcg)
                boolean_res = qp.booleanQuery()
                print("output of boolean_res:: ", boolean_res)
                if boolean_res.__len__() < 1:
                    booleanNADC.append(0)
                else:
                    score = [1] * len(boolean_res)
                    if (score.__len__() < 5):
                        leng = 5 - (score.__len__())
                        score.extend([0] * leng)
                    true_label = boolean_res.copy()
                    query_id = str(q_id)
                    for x in boolean_res:
                        ind = boolean_res.index(x)
                        if (x in qrels_dict.get(query_id)):
                            true_label[ind] = 1
                        else:
                            true_label[ind] = 0
                    if true_label.__len__() < 5:
                        len_val = 10 - (true_label.__len__())
                        true_label.extend([0] * len_val)
                    print("Actual boolean:: ", true_label)
                    print("Predicted boolean:: ", score)
                    if sum(true_label) == 0:
                        booleanNADC.append(0)
                    else:
                        ndcg = metrics.ndcg_score(true_label, score, 5)
                        print("Calculated ndcg for Boolean::", ndcg)
                        booleanNADC.append(ndcg)
            print("Calculated NADC sum for all queries", vectorNADC)
            avergae_vectorNADC = float(sum(vectorNADC) / number_of_queries)
            print("Calculated NADC sum for all queries", booleanNADC)
            avergae_booleanNADC = float(sum(booleanNADC) / number_of_queries)
            print("Avergae NADC Vector::", avergae_vectorNADC)
            print("Avergae NADC boolean::", avergae_booleanNADC)
            p_value = scipy.stats.wilcoxon(vectorNADC,
                                           booleanNADC,
                                           zero_method='wilcox',
                                           correction=False)
            print(i, str(avergae_booleanNADC), str(avergae_vectorNADC),
                  str(p_value[1]))
            p = "%.20f" % float(str(p_value[1]))
            print('P value for all the queries processed is:', p)
            f.write("%s,%s,%s,%s\n" % (i + 1, str(avergae_booleanNADC),
                                       str(avergae_vectorNADC), str(p)))
    print('Done')
コード例 #15
0
def VectorCompare():
     queries = loadCranQry("query.text")
     queries_id_list=[str(int(x)) for x in queries.keys()]
     inputdocument = cran.CranFile("cran.all")
     # load the index file saved at from part 1
     index = InvertedIndex().load("index_file")
     qp = QueryProcessor(queries, index, inputdocument, 10)
     queries_id_list=[str(int(x)) for x in queries.keys()]
     #print(queries_id_list)
     #read querls.txt
     qrels_dict=process_querls_file("qrels.text",queries_id_list)
     #IdeaVectorsforQuery_ids={}
     sumbooleanNADC=[]
     sumvectorNADC=[]
     vectorNADC1 = []
     booleanNADC2 = []
     # random_query_id_list=[153, 18]
     # print(random_query_id_list)
     query_id = [4 , 29, 53, 58, 100]
     vectorNADC1=[]
     vectorNADC2=[]
     for q_id in query_id:
         qp.querynumber = q_id
         # boolean_res=qp.booleanQuery()
         vector_top3 = qp.vectorQuery(5)
         vector2_top3=qp.vectorQuery(5,True)
         # vector_top3=[('12',0.34),('746',0.33),('875',0.24)]
         # print(boolean_res)
         print("Output for Vector Model Result::", vector_top3)
         if (vector_top3.__len__() < 1):
             vectorNADC1.append(0)
         else:
             vector_label = [x[0] for x in vector_top3]
             score = [x[1] for x in vector_top3]
             print("DocumentIDs of Vector Model Result:: ", vector_label)
             print("Scores of Vector Model Result::", score)
             true_label = vector_label.copy()
             query_id = str(q_id)
             for x in vector_label:
                 # str_x="{0:0=3d}".format(x)
                 ind = vector_label.index(x)
                 if (x in qrels_dict.get(query_id)):
                     true_label[ind] = 1
                 else:
                     true_label[ind] = 0
             if true_label.__len__() < 5:
                 len_val = 10 - (true_label.__len__())
                 true_label.extend([0] * len_val)
             print("Actual Vector:: ", true_label)
             print("Predicted Vector:: ", score)
             if sum(true_label) == 0:
                 vectorNADC1.append(0)
             else:
                 ndcg = metrics.ndcg_score(true_label, score, 5)
                 print("Calculated ndcg for Vector::", ndcg)
                 vectorNADC1.append(ndcg)
         if (vector2_top3.__len__() < 1):
             vectorNADC2.append(0)
         else:
             vector_label = [x[0] for x in vector2_top3]
             score = [x[1] for x in vector2_top3]
             print("DocumentIDs of Vector Model Result:: ", vector_label)
             print("Scores of Vector Model Result::", score)
             true_label = vector_label.copy()
             query_id = str(q_id)
             for x in vector_label:
                 # str_x="{0:0=3d}".format(x)
                 ind = vector_label.index(x)
                 if (x in qrels_dict.get(query_id)):
                     true_label[ind] = 1
                 else:
                     true_label[ind] = 0
             if true_label.__len__() < 5:
                 len_val = 10 - (true_label.__len__())
                 true_label.extend([0] * len_val)
             print("Actual Vector:: ", true_label)
             print("Predicted Vector:: ", score)
             if sum(true_label) == 0:
                 vectorNADC2.append(0)
             else:
                 ndcg = metrics.ndcg_score(true_label, score, 5)
                 print("Calculated ndcg for Vector::", ndcg)
                 vectorNADC2.append(ndcg)
     print("Calculated NADC sum for all queries", vectorNADC1)
     avergae_vectorNADC = float(sum(vectorNADC1) / 5)
     print("Calculated NADC sum for all queries", vectorNADC2)
     avergae_vectorNADC2 = float(sum(vectorNADC2) / 5)
     print("Avergae NADC Vector::", avergae_vectorNADC)
     print("Avergae NADC boolean::", avergae_vectorNADC2)
     print(vectorNADC1)
     print(vectorNADC2)
     p_value = scipy.stats.wilcoxon(vectorNADC1, vectorNADC2, zero_method='wilcox', correction=False)
     p = "%.20f" % float(str(p_value[1]))
     print('P value for all the queries processed is:', p)
コード例 #16
0
def eval(index_file, query_text, qrels, n):
    qrys = cranqry.loadCranQry(query_text)
    queries = {}
    for q in qrys:
        queries[q] = qrys[q].text
    query_ids = list(queries.keys())
    query_ids.sort()
    query_ids_ints = []
    for k in range(0, len(query_ids)):  # generating n random queries
        query_ids_ints.append(int(query_ids[k]))
    set1 = set()
    while len(set1) != n:
        set1.add(random.choice(query_ids_ints))
    selected_queries = list(set1)
    docs = set()
    qrels = {}

    f = open("qrels.text", "r")  # parsing relevant queries(qrels.text)
    l = f.readline()
    while l:
        j = l.split(" ")
        if query_ids_ints[int(j[0]) - 1] in qrels.keys():
            qrels[query_ids_ints[int(j[0]) - 1]].append(int(j[1]))
        else:
            qrels[query_ids_ints[int(j[0]) - 1]] = [int(j[1])]
        l = f.readline()
    cranqryobj = cranqry.loadCranQry(query_text)
    dict_query = {}
    for q in cranqryobj:
        dict_query[int(q)] = cranqryobj[
            q].text  # matching queries in query.text and qrels.text
    indexObject = index.InvertedIndex()
    items = indexObject.load(index_file)
    vector_ndcg_score = {}
    vector_score_dict = {}
    for q in selected_queries:
        print(q)
        query_raw = dict_query[q]
        QPobj = QueryProcessor(query_raw, items, index_file)
        QPobj.preprocessing()
        result_list = QPobj.vectorQuery(
            10)  # fetching first 10 documents for a query using vector model
        boolean_result_list = QPobj.booleanQuery()
        print("Boolean query result : ", boolean_result_list
              )  # fetching documents for a query using booleanQuery
        ndcg_boolean = 0
        truth_list = qrels[q]
        boolean_output_list = []
        rank_doc_list = list(map(lambda x: int(x[0]), result_list))
        print("Relavant documents for this query : ",
              truth_list)  # relavant documents for the query
        print("Vector model result : ",
              rank_doc_list)  # documents result list for vector model
        vector_score_list = []
        for id in boolean_result_list:  # calculating the predicted scores for boolean model
            if int(id) in truth_list:
                boolean_output_list.append(1)
            else:
                boolean_output_list.append(0)
        boolean_score_list = []
        if len(boolean_score_list) < 10:
            boolean_score_list = boolean_output_list
            while len(boolean_score_list) != 10:
                boolean_score_list.append(0)
        elif len(boolean_score_list) > 10:
            for i in range(0, 10):
                boolean_score_list[i] = boolean_output_list[i]
        for id in rank_doc_list:  # calculating the predicted scores for vector model

            if id in truth_list:
                vector_score_list.append(1)
            else:
                vector_score_list.append(0)
        vector_score_dict[q] = vector_score_list
        truth_score_list = []
        for i in range(
                0, len(vector_score_list)
        ):  # calculating the ground_truth scores for vector model
            truth_score_list.append(vector_score_list[i])
        truth_score_list.sort(reverse=True)

        boolean_truth_score_list = []
        for i in range(
                0, len(boolean_score_list)
        ):  # calculating the ground_truth scores for boolean model
            boolean_truth_score_list.append(boolean_score_list[i])
        boolean_truth_score_list.sort(reverse=True)
        print("Vector model ground_truth list is:\n", truth_score_list)
        print("Vector ranking score list is:\n", vector_score_list)
        print("Boolean model ground_truth list is:\n",
              boolean_truth_score_list)
        print("Boolean model score list is:\n", boolean_score_list)
        vector_ndcg_score[q] = [
            ndcg_score(np.array(boolean_truth_score_list),
                       np.array(boolean_score_list)),
            ndcg_score(np.array(truth_score_list), np.array(vector_score_list))
        ]
    vector_list = [
    ]  # compute ndcg score for boolean and vector models for all the randomly generated queries
    boolean_list = []
    for qu in vector_ndcg_score:
        vector_list.append(vector_ndcg_score[qu][1])
        boolean_list.append(vector_ndcg_score[qu][0])

    print("ndcg score of boolean and vector models for all the queries:\n",
          vector_ndcg_score)
    print("ndcg scores list for boolean model for all the queries:\n",
          boolean_list)
    print("ndcg scores list for vector model for all the queries:\n",
          vector_list)
    p_value_wilcoxon = stats.wilcoxon(
        np.array(boolean_list), np.array(vector_list)
    )  # calculating p value using wilcoxon test and ttest  for boolean and vector models  p_value_ttest=stats.ttest_ind(np.array(boolean_list),np.array(vector_list), equal_var = False)
    print("wilcoxon test p value is:", p_value_wilcoxon[1])
    print("ttest p value is :", p_value_ttest[1])