def superloss_10(y_true, y_pred): loss_sobel = sobelLoss_mse(y_true, y_pred) dssim = DSSIMObjective(kernel_size=5) loss_dssim = dssim(y_true, y_pred) loss_mae = keras.losses.mae(y_true, y_pred) loss_mse = keras.losses.mse(y_true, y_pred) return 0.3 * loss_sobel + 0.3 * loss_dssim + 0.2 * loss_mse + 0.2 * loss_mae
def superloss_9(y_true, y_pred): loss_sobel = sobelLoss_mse(y_true, y_pred) dssim = DSSIMObjective() loss_dssim = dssim(y_true, y_pred) loss_mae = keras.losses.mae(y_true, y_pred) loss_mse = keras.losses.mse(y_true, y_pred) return 0.4 * loss_sobel + 0.4 * loss_dssim + 0.1 * loss_mse + 0.1 * loss_mae
def superloss_8(y_true, y_pred): dssim = DSSIMObjective() dstsim = DSTSIMObjective() loss_mae = keras.losses.mae(y_true, y_pred) loss_mse = keras.losses.mse(y_true, y_pred) loss_dssim = dssim(y_true, y_pred) loss_dstsim = dstsim(y_true, y_pred) #loss_dstsim = K.print_tensor(loss_dstsim, message='loss_stsim') #loss_dssim = K.print_tensor(loss_dssim, message='loss_ssim') return 0.4 * loss_mse + 0.4 * loss_dstsim + 0.2 * loss_mae
def superloss_7(y_true, y_pred): dssim = DSSIMObjective() loss_mae = keras.losses.mae(y_true, y_pred) loss_mse = keras.losses.mse(y_true, y_pred) loss_dssim = dssim(y_true, y_pred) return 0.5 * loss_dssim + 0.3 * loss_mae + 0.2 * loss_mse
def superloss_6(y_true, y_pred): dssim = DSSIMObjective(kernel_size=5) loss_mae = keras.losses.mae(y_true, y_pred) loss_mse = keras.losses.mse(y_true, y_pred) loss_dssim = dssim(y_true, y_pred) return 0.4 * loss_dssim + 0.5 * loss_mae + 0.1 * loss_mse