def evaluate(): print('Loading model...') model = load_model('') _, _, test_X, _, _, test_Y = split_frame() Y_original = test_Y Y_predict = np.array(model.predict(test_X)) assert Y_original.shape == Y_predict.shape print Y_predict.shape
def process(): train_X, val_X, test_X, train_Y, val_Y, test_Y = split_frame() f = open('frame_content_data', 'wb') pickle.dump(train_X, f) pickle.dump(val_X, f) pickle.dump(test_X, f) pickle.dump(train_Y, f) pickle.dump(val_Y, f) pickle.dump(test_Y, f) f.close()
def main(): print('Loading model...') train_X, val_X, test_X, train_Y, val_Y, test_Y = split_frame() print('Building model...') model = Sequential() model.add(Dense(1024, activation='relu', input_shape=(20, ))) model.add(Dropout(0.5)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1024, activation='relu')) model.add(Dense(30)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1024, activation='relu')) model.add(Dense(30)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1024, activation='relu')) model.add(Dense(30)) print('Compiling model...') model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'], sample_weight_mode=None) print(model.summary()) print('Training model...') model.fit(train_X, train_Y, batch_size=128, epochs=15, validation_data=(val_X, val_Y), class_weight='auto', callbacks=[ EarlyStopping(monitor='val_loss', patience=2, verbose=0), ModelCheckpoint(filepath='model1_weights.{epoch:02d}.hdf5', monitor='val_loss', save_best_only=True, verbose=0) ]) score, acc = model.evaluate(test_X, test_Y, batch_size=128) print('Test score:', score) print('Test accuracy:', acc)
def process(): mfcc, vad = split_frame() f = open('mfcc_vad_3', 'wb') pickle.dump(mfcc, f) pickle.dump(vad, f) f.close()