コード例 #1
0
def applyPathCnsLocal(target, curve, u):
    cns = applyop.pathCns(target, curve, cnsType=False, u=u, tangent=False)
    pm.connectAttr(curve.attr("local"), cns.attr("geometryPath"),
                   f=True)  # tobe local space

    comp_node = pm.createNode("composeMatrix")
    cns.attr("allCoordinates") >> comp_node.attr("inputTranslate")
    cns.attr("rotate") >> comp_node.attr("inputRotate")
    cns.attr("rotateOrder") >> comp_node.attr("inputRotateOrder")

    mul_node = pm.createNode("multMatrix")
    comp_node2 = pm.createNode("composeMatrix")

    pos = target.getTranslation(space="world")
    if pos.x < -0.001:
        pm.setAttr(comp_node2.attr("inputScaleX"), -1.0)

    pm.setAttr(comp_node2.attr("inputRotateX"), 90.0)
    pm.setAttr(comp_node2.attr("inputRotateZ"), 90.0)

    comp_node2.attr("outputMatrix") >> mul_node.attr("matrixIn[0]")
    comp_node.attr("outputMatrix") >> mul_node.attr("matrixIn[1]")
    curve.attr("matrix") >> mul_node.attr("matrixIn[2]")

    decomp_node = pm.createNode("decomposeMatrix")
    mul_node.attr("matrixSum") >> decomp_node.attr("inputMatrix")
    decomp_node.attr("outputTranslate") >> target.attr("translate")
    decomp_node.attr("outputRotate") >> target.attr("rotate")
    decomp_node.attr("outputScale") >> target.attr("scale")

    return cns
コード例 #2
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)

        step = 1.000 / (self.settings["div"] - 1)
        u = 0.000
        for i in range(self.settings["div"]):
            applyop.pathCns(self.upv_cns[i],
                            self.upv_crv,
                            cnsType=False,
                            u=u,
                            tangent=False)

            cns = applyop.pathCns(self.div_cns[i], self.mst_crv, False, u,
                                  True)

            # Connectiong the scale for scaling compensation
            for axis, AX in zip("xyz", "XYZ"):
                pm.connectAttr(dm_node_scl.attr("outputScale{}".format(AX)),
                               self.div_cns[i].attr("s{}".format(axis)))

            cns.setAttr("worldUpType", 1)
            cns.setAttr("frontAxis", 0)
            cns.setAttr("upAxis", 1)

            pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                           cns.attr("worldUpMatrix"))
            u += step

        for ctl in [self.base_ctl, self.tan0_ctl, self.tan1_ctl, self.tip_ctl]:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ctlVis_att, shp.attr("visibility"))

        for tweak_ctl in self.extratweak_ctl:
            for shp in tweak_ctl.getShapes():
                pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))
コード例 #3
0
def applyPathCnsLocal(target, curve, u):
    cns = applyop.pathCns(target, curve, cnsType=False, u=u, tangent=False)
    pm.connectAttr(curve.attr("local"), cns.attr("geometryPath"),
                   f=True)  # tobe local space

    comp_node = pm.createNode("composeMatrix")
    cns.attr("allCoordinates") >> comp_node.attr("inputTranslate")
    cns.attr("rotate") >> comp_node.attr("inputRotate")
    cns.attr("rotateOrder") >> comp_node.attr("inputRotateOrder")

    mul_node = pm.createNode("multMatrix")
    comp_node.attr("outputMatrix") >> mul_node.attr("matrixIn[0]")
    curve.attr("matrix") >> mul_node.attr("matrixIn[1]")

    decomp_node = pm.createNode("decomposeMatrix")
    mul_node.attr("matrixSum") >> decomp_node.attr("inputMatrix")
    decomp_node.attr("outputTranslate") >> target.attr("translate")
    decomp_node.attr("outputRotate") >> target.attr("rotate")

    return cns
コード例 #4
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Auto bend ----------------------------
        if self.settings["autoBend"]:
            mul_node = node.createMulNode(
                [self.autoBendChain[0].ry, self.autoBendChain[0].rz],
                [self.sideBend_att, self.frontBend_att])

            mul_node.outputX >> self.ik1autoRot_lvl.rz
            mul_node.outputY >> self.ik1autoRot_lvl.rx

            self.ikHandleAutoBend = primitive.addIkHandle(
                self.autoBend_ctl, self.getName("ikHandleAutoBend"),
                self.autoBendChain, "ikSCsolver")

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[-1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)
            if i == 0:  # we add extra 10% to the first vertebra
                u = (1.0 / (self.settings["division"] - 1.0)) / 10

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y",
                                                div_node + ".output")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik0_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori0_att)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik1_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori1_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Connections (Hooks) ------------------------------
        pm.parentConstraint(self.hip_lvl, self.cnx0)
        pm.scaleConstraint(self.hip_lvl, self.cnx0)
        pm.parentConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
コード例 #5
0
ファイル: __init__.py プロジェクト: Mikfr83/mgear4
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.pos["root"], self.guide.pos["neck"])
        dist_node = node.createDistNode(self.root, self.ik_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")
        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan0_loc + ".ty")

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_loc.getAttr("ty"))
        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")
        pm.connectAttr(res_node + ".outputX", self.tan1_loc.attr("ty"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         0.5, 0.5)
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.divisions):

            # References
            u = i / (self.divisions - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)
            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.intMRef + ".worldMatrix", self.ik_ctl + ".worldMatrix", u)
            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.fk_npo[i], self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")
            op.setAttr("driver_min", 0.1)

            # scl compas
            if i != 0:
                div_node = node.createDivNode(
                    [1, 1, 1],
                    [
                        self.fk_npo[i - 1] + ".sx",
                        self.fk_npo[i - 1] + ".sy",
                        self.fk_npo[i - 1] + ".sz",
                    ],
                )

                pm.connectAttr(div_node + ".output",
                               self.scl_npo[i] + ".scale")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"),
                )
            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"),
                )

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate",
                           self.fk_npo[i].attr("t"))
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == self.divisions - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl +
                                                         ".worldMatrix")
                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"],
                    self.lock_ori_att,
                )
                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # Head ---------------------------------------------
        self.fk_ctl[-1].addChild(self.head_cns)

        # scale compensation
        dm_node = node.createDecomposeMatrixNode(self.scl_npo[0] +
                                                 ".parentInverseMatrix")

        pm.connectAttr(dm_node + ".outputScale", self.scl_npo[0] + ".scale")
コード例 #6
0
def rig(edge_loop="",
        up_vertex="",
        low_vertex="",
        name_prefix="",
        thickness=0.3,
        do_skin=True,
        rigid_loops=5,
        falloff_loops=8,
        head_joint=None,
        jaw_joint=None,
        parent_node=None,
        control_name="ctl",
        upper_lip_ctl=None,
        lower_lip_ctl=None):

    ######
    # Var
    ######

    FRONT_OFFSET = .02
    NB_ROPE = 15

    ##################
    # Helper functions
    ##################
    def setName(name, side="C", idx=None):
        namesList = [name_prefix, side, name]
        if idx is not None:
            namesList[1] = side + str(idx)
        name = "_".join(namesList)
        return name

    ###############
    # Checkers
    ##############

    # Loop
    if edge_loop:
        try:
            edge_loop = [pm.PyNode(e) for e in edge_loop.split(",")]
        except pm.MayaNodeError:
            pm.displayWarning(
                "Some of the edges listed in edge loop can not be found")
            return
    else:
        pm.displayWarning("Please set the edge loop first")
        return

    # Vertex
    if up_vertex:
        try:
            up_vertex = pm.PyNode(up_vertex)
        except pm.MayaNodeError:
            pm.displayWarning("%s can not be found" % up_vertex)
            return
    else:
        pm.displayWarning("Please set the upper lip central vertex")
        return

    if low_vertex:
        try:
            low_vertex = pm.PyNode(low_vertex)
        except pm.MayaNodeError:
            pm.displayWarning("%s can not be found" % low_vertex)
            return
    else:
        pm.displayWarning("Please set the lower lip central vertex")
        return

    # skinnign data
    if do_skin:
        if not head_joint:
            pm.displayWarning("Please set the Head Jnt or unCheck Compute "
                              "Topological Autoskin")
            return
        else:
            try:
                head_joint = pm.PyNode(head_joint)
            except pm.MayaNodeError:
                pm.displayWarning(
                    "Head Joint: %s can not be found" % head_joint
                )
                return
        if not jaw_joint:
            pm.displayWarning("Please set the Jaw Jnt or unCheck Compute "
                              "Topological Autoskin")
            return
        else:
            try:
                jaw_joint = pm.PyNode(jaw_joint)
            except pm.MayaNodeError:
                pm.displayWarning("Jaw Joint: %s can not be found" % jaw_joint)
                return
    # check if the rig already exist in the current scene
    if pm.ls(setName("root")):
        pm.displayWarning("The object %s already exist in the scene. Please "
                          "choose another name prefix" % setName("root"))
        return

    #####################
    # Root creation
    #####################
    lips_root = primitive.addTransform(None, setName("root"))
    lipsCrv_root = primitive.addTransform(lips_root, setName("crvs"))
    lipsRope_root = primitive.addTransform(lips_root, setName("rope"))

    #####################
    # Geometry
    #####################
    geo = pm.listRelatives(edge_loop[0], parent=True)[0]

    #####################
    # Groups
    #####################
    try:
        ctlSet = pm.PyNode("rig_controllers_grp")
    except pm.MayaNodeError:
        pm.sets(n="rig_controllers_grp", em=True)
        ctlSet = pm.PyNode("rig_controllers_grp")
    try:
        defset = pm.PyNode("rig_deformers_grp")
    except pm.MayaNodeError:
        pm.sets(n="rig_deformers_grp", em=True)
        defset = pm.PyNode("rig_deformers_grp")

    #####################
    # Curves creation
    #####################

    # get extreme position using the outer loop
    extr_v = meshNavigation.getExtremeVertexFromLoop(edge_loop)
    upPos = extr_v[0]
    lowPos = extr_v[1]
    inPos = extr_v[2]
    outPos = extr_v[3]
    edgeList = extr_v[4]
    vertexList = extr_v[5]
    upPos = up_vertex
    lowPos = low_vertex

    # upper crv
    upLip_edgeRange = meshNavigation.edgeRangeInLoopFromMid(edgeList,
                                                            upPos,
                                                            inPos,
                                                            outPos)
    upCrv = curve.createCuveFromEdges(upLip_edgeRange,
                                      setName("upperLip"),
                                      parent=lipsCrv_root)
    # store the closest vertex by curv cv index. To be use fo the auto skining
    upLip_closestVtxList = []
    # offset upper lip Curve
    cvs = upCrv.getCVs(space="world")
    for i, cv in enumerate(cvs):

        closestVtx = meshNavigation.getClosestVertexFromTransform(geo, cv)
        upLip_closestVtxList.append(closestVtx)
        if i == 0:
            # we know the curv starts from right to left
            offset = [cv[0] - thickness, cv[1], cv[2] - thickness]
        elif i == len(cvs) - 1:
            offset = [cv[0] + thickness, cv[1], cv[2] - thickness]
        else:
            offset = [cv[0], cv[1] + thickness, cv[2]]
        upCrv.setCV(i, offset, space='world')

    # lower crv
    lowLip_edgeRange = meshNavigation.edgeRangeInLoopFromMid(edgeList,
                                                             lowPos,
                                                             inPos,
                                                             outPos)
    lowCrv = curve.createCuveFromEdges(lowLip_edgeRange,
                                       setName("lowerLip"),
                                       parent=lipsCrv_root)
    lowLip_closestVtxList = []
    # offset lower lip Curve
    cvs = lowCrv.getCVs(space="world")
    for i, cv in enumerate(cvs):
        closestVtx = meshNavigation.getClosestVertexFromTransform(geo, cv)
        lowLip_closestVtxList.append(closestVtx)
        if i == 0:
            # we know the curv starts from right to left
            offset = [cv[0] - thickness, cv[1], cv[2] - thickness]
        elif i == len(cvs) - 1:
            offset = [cv[0] + thickness, cv[1], cv[2] - thickness]
        else:
            # we populate the closest vertext list here to skipt the first
            # and latest point
            offset = [cv[0], cv[1] - thickness, cv[2]]
        lowCrv.setCV(i, offset, space='world')

    upCrv_ctl = curve.createCurveFromCurve(upCrv,
                                           setName("upCtl_crv"),
                                           nbPoints=7,
                                           parent=lipsCrv_root)
    lowCrv_ctl = curve.createCurveFromCurve(lowCrv,
                                            setName("lowCtl_crv"),
                                            nbPoints=7,
                                            parent=lipsCrv_root)

    upRope = curve.createCurveFromCurve(upCrv,
                                        setName("upRope_crv"),
                                        nbPoints=NB_ROPE,
                                        parent=lipsCrv_root)
    lowRope = curve.createCurveFromCurve(lowCrv,
                                         setName("lowRope_crv"),
                                         nbPoints=NB_ROPE,
                                         parent=lipsCrv_root)

    upCrv_upv = curve.createCurveFromCurve(upCrv,
                                           setName("upCrv_upv"),
                                           nbPoints=7,
                                           parent=lipsCrv_root)
    lowCrv_upv = curve.createCurveFromCurve(lowCrv,
                                            setName("lowCrv_upv"),
                                            nbPoints=7,
                                            parent=lipsCrv_root)

    upRope_upv = curve.createCurveFromCurve(upCrv,
                                            setName("upRope_upv"),
                                            nbPoints=NB_ROPE,
                                            parent=lipsCrv_root)
    lowRope_upv = curve.createCurveFromCurve(lowCrv,
                                             setName("lowRope_upv"),
                                             nbPoints=NB_ROPE,
                                             parent=lipsCrv_root)

    # offset upv curves

    for crv in [upCrv_upv, lowCrv_upv, upRope_upv, lowRope_upv]:
        cvs = crv.getCVs(space="world")
        for i, cv in enumerate(cvs):

            # we populate the closest vertext list here to skipt the first
            # and latest point
            offset = [cv[0], cv[1], cv[2] + FRONT_OFFSET]
            crv.setCV(i, offset, space='world')

    rigCrvs = [upCrv,
               lowCrv,
               upCrv_ctl,
               lowCrv_ctl,
               upRope,
               lowRope,
               upCrv_upv,
               lowCrv_upv,
               upRope_upv,
               lowRope_upv]

    for crv in rigCrvs:
        crv.attr("visibility").set(False)

    ##################
    # Joints
    ##################

    lvlType = "transform"

    # upper joints
    upperJoints = []
    cvs = upCrv.getCVs(space="world")
    pm.progressWindow(title='Creating Upper Joints', progress=0, max=len(cvs))

    for i, cv in enumerate(cvs):
        pm.progressWindow(e=True,
                          step=1,
                          status='\nCreating Joint for  %s' % cv)
        oTransUpV = pm.PyNode(pm.createNode(
            lvlType,
            n=setName("upLipRopeUpv", idx=str(i).zfill(3)),
            p=lipsRope_root,
            ss=True))
        oTrans = pm.PyNode(
            pm.createNode(lvlType,
                          n=setName("upLipRope", idx=str(i).zfill(3)),
                          p=lipsRope_root, ss=True))

        oParam, oLength = curve.getCurveParamAtPosition(upRope, cv)
        uLength = curve.findLenghtFromParam(upRope, oParam)
        u = uLength / oLength

        applyop.pathCns(
            oTransUpV, upRope_upv, cnsType=False, u=u, tangent=False)

        cns = applyop.pathCns(
            oTrans, upRope, cnsType=False, u=u, tangent=False)

        cns.setAttr("worldUpType", 1)
        cns.setAttr("frontAxis", 0)
        cns.setAttr("upAxis", 1)

        pm.connectAttr(oTransUpV.attr("worldMatrix[0]"),
                       cns.attr("worldUpMatrix"))

        # getting joint parent
        if head_joint and isinstance(head_joint, (str, string_types)):
            try:
                j_parent = pm.PyNode(head_joint)
            except pm.MayaNodeError:
                j_parent = False
        elif head_joint and isinstance(head_joint, pm.PyNode):
            j_parent = head_joint
        else:
            j_parent = False

        jnt = rigbits.addJnt(oTrans, noReplace=True, parent=j_parent)
        upperJoints.append(jnt)
        pm.sets(defset, add=jnt)
    pm.progressWindow(e=True, endProgress=True)

    # lower joints
    lowerJoints = []
    cvs = lowCrv.getCVs(space="world")
    pm.progressWindow(title='Creating Lower Joints', progress=0, max=len(cvs))

    for i, cv in enumerate(cvs):
        pm.progressWindow(e=True,
                          step=1,
                          status='\nCreating Joint for  %s' % cv)
        oTransUpV = pm.PyNode(pm.createNode(
            lvlType,
            n=setName("lowLipRopeUpv", idx=str(i).zfill(3)),
            p=lipsRope_root,
            ss=True))

        oTrans = pm.PyNode(pm.createNode(
            lvlType,
            n=setName("lowLipRope", idx=str(i).zfill(3)),
            p=lipsRope_root,
            ss=True))

        oParam, oLength = curve.getCurveParamAtPosition(lowRope, cv)
        uLength = curve.findLenghtFromParam(lowRope, oParam)
        u = uLength / oLength

        applyop.pathCns(oTransUpV,
                        lowRope_upv,
                        cnsType=False,
                        u=u,
                        tangent=False)
        cns = applyop.pathCns(oTrans,
                              lowRope,
                              cnsType=False,
                              u=u,
                              tangent=False)

        cns.setAttr("worldUpType", 1)
        cns.setAttr("frontAxis", 0)
        cns.setAttr("upAxis", 1)

        pm.connectAttr(oTransUpV.attr("worldMatrix[0]"),
                       cns.attr("worldUpMatrix"))

        # getting joint parent
        if jaw_joint and isinstance(jaw_joint, (str, string_types)):
            try:
                j_parent = pm.PyNode(jaw_joint)
            except pm.MayaNodeError:
                pass
        elif jaw_joint and isinstance(jaw_joint, pm.PyNode):
            j_parent = jaw_joint
        else:
            j_parent = False
        jnt = rigbits.addJnt(oTrans, noReplace=True, parent=j_parent)
        lowerJoints.append(jnt)
        pm.sets(defset, add=jnt)
    pm.progressWindow(e=True, endProgress=True)

    ##################
    # Controls
    ##################

    # Controls lists
    upControls = []
    upVec = []
    upNpo = []
    lowControls = []
    lowVec = []
    lowNpo = []
    # controls options
    axis_list = ["sx", "sy", "sz", "ro"]
    upCtlOptions = [["corner", "R", "square", 4, .05, axis_list],
                    ["upOuter", "R", "circle", 14, .03, []],
                    ["upInner", "R", "circle", 14, .03, []],
                    ["upper", "C", "square", 4, .05, axis_list],
                    ["upInner", "L", "circle", 14, .03, []],
                    ["upOuter", "L", "circle", 14, .03, []],
                    ["corner", "L", "square", 4, .05, axis_list]]

    lowCtlOptions = [["lowOuter", "R", "circle", 14, .03, []],
                     ["lowInner", "R", "circle", 14, .03, []],
                     ["lower", "C", "square", 4, .05, axis_list],
                     ["lowInner", "L", "circle", 14, .03, []],
                     ["lowOuter", "L", "circle", 14, .03, []]]

    params = ["tx", "ty", "tz", "rx", "ry", "rz"]

    # upper controls
    cvs = upCrv_ctl.getCVs(space="world")
    pm.progressWindow(title='Upper controls', progress=0, max=len(cvs))

    v0 = transform.getTransformFromPos(cvs[0])
    v1 = transform.getTransformFromPos(cvs[-1])
    distSize = vector.getDistance(v0, v1) * 3

    for i, cv in enumerate(cvs):
        pm.progressWindow(e=True,
                          step=1,
                          status='\nCreating control for%s' % cv)
        t = transform.getTransformFromPos(cv)

        # Get nearest joint for orientation of controls
        joints = upperJoints + lowerJoints
        nearest_joint = None
        nearest_distance = None
        for joint in joints:
            distance = vector.getDistance(
                transform.getTranslation(joint),
                cv
            )
            if nearest_distance is None or distance < nearest_distance:
                nearest_distance = distance
                nearest_joint = joint

        if nearest_joint:
            t = transform.setMatrixPosition(
                transform.getTransform(nearest_joint), cv
            )
            temp = primitive.addTransform(
                lips_root, setName("temp"), t
            )
            temp.rx.set(0)
            t = transform.getTransform(temp)
            pm.delete(temp)

        oName = upCtlOptions[i][0]
        oSide = upCtlOptions[i][1]
        o_icon = upCtlOptions[i][2]
        color = upCtlOptions[i][3]
        wd = upCtlOptions[i][4]
        oPar = upCtlOptions[i][5]
        npo = primitive.addTransform(lips_root,
                                     setName("%s_npo" % oName, oSide),
                                     t)
        upNpo.append(npo)
        ctl = icon.create(npo,
                          setName("%s_%s" % (oName, control_name), oSide),
                          t,
                          icon=o_icon,
                          w=wd * distSize,
                          d=wd * distSize,
                          ro=datatypes.Vector(1.57079633, 0, 0),
                          po=datatypes.Vector(0, 0, .07 * distSize),
                          color=color)

        upControls.append(ctl)
        name_split = control_name.split("_")
        if len(name_split) == 2 and name_split[-1] == "ghost":
            pass
        else:
            pm.sets(ctlSet, add=ctl)
        attribute.addAttribute(ctl, "isCtl", "bool", keyable=False)
        attribute.setKeyableAttributes(ctl, params + oPar)

        upv = primitive.addTransform(ctl, setName("%s_upv" % oName, oSide), t)
        upv.attr("tz").set(FRONT_OFFSET)
        upVec.append(upv)
        if oSide == "R":
            npo.attr("sx").set(-1)
    pm.progressWindow(e=True, endProgress=True)

    # lower controls
    cvs = lowCrv_ctl.getCVs(space="world")
    pm.progressWindow(title='Lower controls', progress=0, max=len(cvs))

    for i, cv in enumerate(cvs[1:-1]):
        pm.progressWindow(e=True,
                          step=1,
                          status='\nCreating control for%s' % cv)

        t = transform.getTransformFromPos(cv)

        # Get nearest joint for orientation of controls
        joints = upperJoints + lowerJoints
        nearest_joint = None
        nearest_distance = None
        for joint in joints:
            distance = vector.getDistance(
                transform.getTranslation(joint),
                cv
            )
            if nearest_distance is None or distance < nearest_distance:
                nearest_distance = distance
                nearest_joint = joint

        if nearest_joint:
            t = transform.setMatrixPosition(
                transform.getTransform(nearest_joint), cv
            )
            temp = primitive.addTransform(
                lips_root, setName("temp"), t
            )
            temp.rx.set(0)
            t = transform.getTransform(temp)
            pm.delete(temp)

        oName = lowCtlOptions[i][0]
        oSide = lowCtlOptions[i][1]
        o_icon = lowCtlOptions[i][2]
        color = lowCtlOptions[i][3]
        wd = lowCtlOptions[i][4]
        oPar = lowCtlOptions[i][5]
        npo = primitive.addTransform(lips_root,
                                     setName("%s_npo" % oName, oSide),
                                     t)
        lowNpo.append(npo)
        ctl = icon.create(npo,
                          setName("%s_%s" % (oName, control_name), oSide),
                          t,
                          icon=o_icon,
                          w=wd * distSize,
                          d=wd * distSize,
                          ro=datatypes.Vector(1.57079633, 0, 0),
                          po=datatypes.Vector(0, 0, .07 * distSize),
                          color=color)
        lowControls.append(ctl)
        name_split = control_name.split("_")
        if len(name_split) == 2 and control_name.split("_")[-1] == "ghost":
            pass
        else:
            pm.sets(ctlSet, add=ctl)
        attribute.addAttribute(ctl, "isCtl", "bool", keyable=False)
        attribute.setKeyableAttributes(ctl, params + oPar)

        upv = primitive.addTransform(ctl, setName("%s_upv" % oName, oSide), t)
        upv.attr("tz").set(FRONT_OFFSET)
        lowVec.append(upv)
        if oSide == "R":
            npo.attr("sx").set(-1)
    pm.progressWindow(e=True, endProgress=True)

    # reparentig controls
    pm.parent(upNpo[1], lowNpo[0], upControls[0])
    pm.parent(upNpo[2], upNpo[4], upControls[3])
    pm.parent(upNpo[-2], lowNpo[-1], upControls[-1])
    pm.parent(lowNpo[1], lowNpo[3], lowControls[2])

    # Connecting control crvs with controls
    applyop.gear_curvecns_op(upCrv_ctl, upControls)
    applyop.gear_curvecns_op(lowCrv_ctl,
                             [upControls[0]] + lowControls + [upControls[-1]])

    applyop.gear_curvecns_op(upCrv_upv, upVec)
    applyop.gear_curvecns_op(lowCrv_upv, [upVec[0]] + lowVec + [upVec[-1]])

    # adding wires
    pm.wire(upCrv, w=upCrv_ctl, dropoffDistance=[0, 1000])
    pm.wire(lowCrv, w=lowCrv_ctl, dropoffDistance=[0, 1000])
    pm.wire(upRope, w=upCrv_ctl, dropoffDistance=[0, 1000])
    pm.wire(lowRope, w=lowCrv_ctl, dropoffDistance=[0, 1000])

    pm.wire(upRope_upv, w=upCrv_upv, dropoffDistance=[0, 1000])
    pm.wire(lowRope_upv, w=lowCrv_upv, dropoffDistance=[0, 1000])

    # setting constrains
    # up
    cns_node = pm.parentConstraint(upControls[0],
                                   upControls[3],
                                   upControls[1].getParent(),
                                   mo=True,
                                   skipRotate=["x", "y", "z"])
    cns_node.attr(upControls[0].name() + "W0").set(.75)
    cns_node.attr(upControls[3].name() + "W1").set(.25)
    cns_node.interpType.set(0)  # noFlip

    cns_node = pm.parentConstraint(upControls[0],
                                   upControls[3],
                                   upControls[2].getParent(),
                                   mo=True,
                                   skipRotate=["x", "y", "z"])
    cns_node.attr(upControls[0].name() + "W0").set(.25)
    cns_node.attr(upControls[3].name() + "W1").set(.75)
    cns_node.interpType.set(0)  # noFlip

    cns_node = pm.parentConstraint(upControls[3],
                                   upControls[6],
                                   upControls[4].getParent(),
                                   mo=True,
                                   skipRotate=["x", "y", "z"])
    cns_node.attr(upControls[3].name() + "W0").set(.75)
    cns_node.attr(upControls[6].name() + "W1").set(.25)
    cns_node.interpType.set(0)  # noFlip

    cns_node = pm.parentConstraint(upControls[3],
                                   upControls[6],
                                   upControls[5].getParent(),
                                   mo=True,
                                   skipRotate=["x", "y", "z"])
    cns_node.attr(upControls[3].name() + "W0").set(.25)
    cns_node.attr(upControls[6].name() + "W1").set(.75)
    cns_node.interpType.set(0)  # noFlip

    # low
    cns_node = pm.parentConstraint(upControls[0],
                                   lowControls[2],
                                   lowControls[0].getParent(),
                                   mo=True,
                                   skipRotate=["x", "y", "z"])
    cns_node.attr(upControls[0].name() + "W0").set(.75)
    cns_node.attr(lowControls[2].name() + "W1").set(.25)
    cns_node.interpType.set(0)  # noFlip

    cns_node = pm.parentConstraint(upControls[0],
                                   lowControls[2],
                                   lowControls[1].getParent(),
                                   mo=True,
                                   skipRotate=["x", "y", "z"])
    cns_node.attr(upControls[0].name() + "W0").set(.25)
    cns_node.attr(lowControls[2].name() + "W1").set(.75)
    cns_node.interpType.set(0)  # noFlip

    cns_node = pm.parentConstraint(lowControls[2],
                                   upControls[6],
                                   lowControls[3].getParent(),
                                   mo=True,
                                   skipRotate=["x", "y", "z"])
    cns_node.attr(lowControls[2].name() + "W0").set(.75)
    cns_node.attr(upControls[6].name() + "W1").set(.25)
    cns_node.interpType.set(0)  # noFlip

    cns_node = pm.parentConstraint(lowControls[2],
                                   upControls[6],
                                   lowControls[4].getParent(),
                                   mo=True,
                                   skipRotate=["x", "y", "z"])
    cns_node.attr(lowControls[2].name() + "W0").set(.25)
    cns_node.attr(upControls[6].name() + "W1").set(.75)
    cns_node.interpType.set(0)  # noFlip

    ###########################################
    # Connecting rig
    ###########################################
    if parent_node:
        try:
            if isinstance(parent_node, string_types):
                parent_node = pm.PyNode(parent_node)
            parent_node.addChild(lips_root)
        except pm.MayaNodeError:
            pm.displayWarning("The Lips rig can not be parent to: %s. Maybe "
                              "this object doesn't exist." % parent_node)
    if head_joint and jaw_joint:
        try:
            if isinstance(head_joint, string_types):
                head_joint = pm.PyNode(head_joint)
        except pm.MayaNodeError:
            pm.displayWarning("Head Joint or Upper Lip Joint %s. Can not be "
                              "fount in the scene" % head_joint)
            return
        try:
            if isinstance(jaw_joint, string_types):
                jaw_joint = pm.PyNode(jaw_joint)
        except pm.MayaNodeError:
            pm.displayWarning("Jaw Joint or Lower Lip Joint %s. Can not be "
                              "fount in the scene" % jaw_joint)
            return

        ref_ctls = [head_joint, jaw_joint]

        if upper_lip_ctl and lower_lip_ctl:
            try:
                if isinstance(upper_lip_ctl, string_types):
                    upper_lip_ctl = pm.PyNode(upper_lip_ctl)
            except pm.MayaNodeError:
                pm.displayWarning("Upper Lip Ctl %s. Can not be "
                                  "fount in the scene" % upper_lip_ctl)
                return
            try:
                if isinstance(lower_lip_ctl, string_types):
                    lower_lip_ctl = pm.PyNode(lower_lip_ctl)
            except pm.MayaNodeError:
                pm.displayWarning("Lower Lip Ctl %s. Can not be "
                                  "fount in the scene" % lower_lip_ctl)
                return
            ref_ctls = [upper_lip_ctl, lower_lip_ctl]

        # in order to avoid flips lets create a reference transform
        # also to avoid flips, set any multi target parentConstraint to noFlip
        ref_cns_list = []
        print (ref_ctls)
        for cns_ref in ref_ctls:

            t = transform.getTransformFromPos(
                cns_ref.getTranslation(space='world'))
            ref = pm.createNode("transform",
                                n=cns_ref.name() + "_cns",
                                p=cns_ref,
                                ss=True)
            ref.setMatrix(t, worldSpace=True)
            ref_cns_list.append(ref)
        # right corner connection
        cns_node = pm.parentConstraint(ref_cns_list[0],
                                       ref_cns_list[1],
                                       upControls[0].getParent(),
                                       mo=True)
        cns_node.interpType.set(0)  # noFlip
        # left corner connection
        cns_node = pm.parentConstraint(ref_cns_list[0],
                                       ref_cns_list[1],
                                       upControls[-1].getParent(),
                                       mo=True)
        cns_node.interpType.set(0)  # noFlip
        # up control connection
        cns_node = pm.parentConstraint(ref_cns_list[0],
                                       upControls[3].getParent(),
                                       mo=True)
        # low control connection
        cns_node = pm.parentConstraint(ref_cns_list[1],
                                       lowControls[2].getParent(),
                                       mo=True)

    ###########################################
    # Auto Skinning
    ###########################################
    if do_skin:
        # eyelid vertex rows
        totalLoops = rigid_loops + falloff_loops
        vertexLoopList = meshNavigation.getConcentricVertexLoop(vertexList,
                                                                totalLoops)
        vertexRowList = meshNavigation.getVertexRowsFromLoops(vertexLoopList)

        # we set the first value 100% for the first initial loop
        skinPercList = [1.0]
        # we expect to have a regular grid topology
        for r in range(rigid_loops):
            for rr in range(2):
                skinPercList.append(1.0)
        increment = 1.0 / float(falloff_loops)
        # we invert to smooth out from 100 to 0
        inv = 1.0 - increment
        for r in range(falloff_loops):
            for rr in range(2):
                if inv < 0.0:
                    inv = 0.0
                skinPercList.append(inv)
            inv -= increment

        # this loop add an extra 0.0 indices to avoid errors
        for r in range(10):
            for rr in range(2):
                skinPercList.append(0.0)

        # base skin
        if head_joint:
            try:
                head_joint = pm.PyNode(head_joint)
            except pm.MayaNodeError:
                pm.displayWarning(
                    "Auto skin aborted can not find %s " % head_joint)
                return

        # Check if the object has a skinCluster
        objName = pm.listRelatives(geo, parent=True)[0]

        skinCluster = skin.getSkinCluster(objName)
        if not skinCluster:
            skinCluster = pm.skinCluster(head_joint,
                                         geo,
                                         tsb=True,
                                         nw=2,
                                         n='skinClsEyelid')

        lipsJoints = upperJoints + lowerJoints
        closestVtxList = upLip_closestVtxList + lowLip_closestVtxList
        pm.progressWindow(title='Auto skinning process',
                          progress=0,
                          max=len(lipsJoints))

        for i, jnt in enumerate(lipsJoints):
            pm.progressWindow(e=True, step=1, status='\nSkinning %s' % jnt)
            skinCluster.addInfluence(jnt, weight=0)
            v = closestVtxList[i]
            for row in vertexRowList:
                if v in row:
                    for i, rv in enumerate(row):
                        # find the deformer with max value for each vertex
                        w = pm.skinPercent(skinCluster,
                                           rv,
                                           query=True,
                                           value=True)
                        transJoint = pm.skinPercent(skinCluster,
                                                    rv,
                                                    query=True,
                                                    t=None)
                        max_value = max(w)
                        max_index = w.index(max_value)

                        perc = skinPercList[i]
                        t_value = [(jnt, perc),
                                   (transJoint[max_index], 1.0 - perc)]
                        pm.skinPercent(skinCluster,
                                       rv,
                                       transformValue=t_value)
        pm.progressWindow(e=True, endProgress=True)
コード例 #7
0
def rope(DEF_nb=10,
         ropeName="rope",
         keepRatio=False,
         lvlType="transform",
         oSel=None):
    """Create rope rig based in 2 parallel curves.

    Args:
        DEF_nb (int): Number of deformer joints.
        ropeName (str): Name for the rope rig.
        keepRatio (bool): If True, the deformers will keep the length
            position when the curve is stretched.
    """
    if oSel and len(oSel) == 2 and isinstance(oSel, list):
        oCrv = oSel[0]
        if isinstance(oCrv, str):
            oCrv = pm.PyNode(oCrv)
        oCrvUpV = oSel[1]
        if isinstance(oCrvUpV, str):
            oCrvUpV = pm.PyNode(oCrvUpV)
    else:
        if len(pm.selected()) != 2:
            print("You need to select 2 nurbsCurve")
            return
        oCrv = pm.selected()[0]
        oCrvUpV = pm.selected()[1]
    if (oCrv.getShape().type() != "nurbsCurve"
            or oCrvUpV.getShape().type() != "nurbsCurve"):
        print("One of the selected objects is not of type: 'nurbsCurve'")
        print(oCrv.getShape().type())
        print(oCrvUpV.getShape().type())
        return
    if keepRatio:
        arclen_node = pm.arclen(oCrv, ch=True)
        alAttr = pm.getAttr(arclen_node + ".arcLength")
        muldiv_node = pm.createNode("multiplyDivide")
        pm.connectAttr(arclen_node + ".arcLength", muldiv_node + ".input1X")
        pm.setAttr(muldiv_node + ".input2X", alAttr)
        pm.setAttr(muldiv_node + ".operation", 2)
        pm.addAttr(oCrv, ln="length_ratio", k=True, w=True)
        pm.connectAttr(muldiv_node + ".outputX", oCrv + ".length_ratio")

    root = pm.PyNode(pm.createNode(lvlType, n=ropeName + "_root", ss=True))
    step = 1.000 / (DEF_nb - 1)
    i = 0.000
    shds = []
    for x in range(DEF_nb):

        oTransUpV = pm.PyNode(
            pm.createNode(lvlType,
                          n=ropeName + str(x).zfill(3) + "_upv",
                          p=root,
                          ss=True))

        oTrans = pm.PyNode(
            pm.createNode(lvlType,
                          n=ropeName + str(x).zfill(3) + "_lvl",
                          p=root,
                          ss=True))

        cnsUpv = applyop.pathCns(oTransUpV,
                                 oCrvUpV,
                                 cnsType=False,
                                 u=i,
                                 tangent=False)

        cns = applyop.pathCns(oTrans, oCrv, cnsType=False, u=i, tangent=False)

        if keepRatio:
            muldiv_node2 = pm.createNode("multiplyDivide")
            condition_node = pm.createNode("condition")
            pm.setAttr(muldiv_node2 + ".operation", 2)
            pm.setAttr(muldiv_node2 + ".input1X", i)
            pm.connectAttr(oCrv + ".length_ratio", muldiv_node2 + ".input2X")
            pm.connectAttr(muldiv_node2 + ".outputX",
                           condition_node + ".colorIfFalseR")
            pm.connectAttr(muldiv_node2 + ".outputX",
                           condition_node + ".secondTerm")
            pm.connectAttr(muldiv_node2 + ".input1X",
                           condition_node + ".colorIfTrueR")
            pm.connectAttr(muldiv_node2 + ".input1X",
                           condition_node + ".firstTerm")
            pm.setAttr(condition_node + ".operation", 4)

            pm.connectAttr(condition_node + ".outColorR", cnsUpv + ".uValue")
            pm.connectAttr(condition_node + ".outColorR", cns + ".uValue")

        cns.setAttr("worldUpType", 1)
        cns.setAttr("frontAxis", 0)
        cns.setAttr("upAxis", 1)

        pm.connectAttr(oTransUpV.attr("worldMatrix[0]"),
                       cns.attr("worldUpMatrix"))
        shd = rigbits.addJnt(oTrans)
        shds.append(shd[0])
        i += step

    return shds
コード例 #8
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # setup out channels. This channels are pass through for stack
        node.createPlusMinusAverage1D(
            [self.mid_wide_att, self.mid_wide_in_att, -1.0], 1,
            self.mid_wide_out_att)
        node.createPlusMinusAverage1D(
            [self.mid_depth_att, self.mid_depth_in_att, -1.0], 1,
            self.mid_depth_out_att)

        node.createPlusMinusAverage1D(
            [self.tip_wide_att, self.tip_wide_in_att, -1.0], 1,
            self.tip_wide_out_att)
        node.createPlusMinusAverage1D(
            [self.tip_depth_att, self.tip_depth_in_att, -1.0], 1,
            self.tip_depth_out_att)

        node.createPlusMinusAverage1D(
            [self.mid_twist_att, self.mid_twist_in_att], 1,
            self.mid_twist_out_att)

        node.createPlusMinusAverage1D(
            [self.tip_twist_att, self.tip_twist_in_att], 1,
            self.tip_twist_out_att)

        if not self.settings["simpleFK"]:
            dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
            if self.settings["keepLength"]:
                arclen_node = pm.arclen(self.mst_crv, ch=True)
                alAttr = pm.getAttr(arclen_node + ".arcLength")
                ration_node = node.createMulNode(self.length_ratio_att, alAttr)

                pm.addAttr(self.mst_crv, ln="length_ratio", k=True, w=True)
                node.createDivNode(arclen_node.arcLength, ration_node.outputX,
                                   self.mst_crv.length_ratio)

                div_node_scl = node.createDivNode(self.mst_crv.length_ratio,
                                                  dm_node_scl.outputScaleX)

            step = 1.000 / (self.def_number - 1)
            step_mid = 1.000 / ((self.def_number - 1) / 2.0)
            u = 0.000
            u_mid = 0.000
            pass_mid = False
            for i in range(self.def_number):
                cnsUpv = applyop.pathCns(self.upv_cns[i],
                                         self.upv_crv,
                                         cnsType=False,
                                         u=u,
                                         tangent=False)

                cns = applyop.pathCns(self.div_cns[i], self.mst_crv, False, u,
                                      True)

                # Connecting the scale for scaling compensation
                # for axis, AX in zip("xyz", "XYZ"):
                for axis, AX in zip("x", "X"):
                    pm.connectAttr(
                        dm_node_scl.attr("outputScale{}".format(AX)),
                        self.div_cns[i].attr("s{}".format(axis)))

                if self.settings["keepLength"]:

                    div_node2 = node.createDivNode(u, div_node_scl.outputX)

                    cond_node = node.createConditionNode(
                        div_node2.input1X, div_node2.outputX, 4,
                        div_node2.input1X, div_node2.outputX)

                    pm.connectAttr(cond_node + ".outColorR",
                                   cnsUpv + ".uValue")
                    pm.connectAttr(cond_node + ".outColorR", cns + ".uValue")

                cns.setAttr("worldUpType", 1)
                cns.setAttr("frontAxis", 0)
                cns.setAttr("upAxis", 1)

                pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                               cns.attr("worldUpMatrix"))

                # Connect scale Wide and Depth
                # wide and Depth
                mid_mul_node = node.createMulNode(
                    [self.mid_wide_att, self.mid_depth_att],
                    [self.mid_wide_in_att, self.mid_depth_in_att])
                mid_mul_node2 = node.createMulNode(
                    [mid_mul_node.outputX, mid_mul_node.outputY],
                    [u_mid, u_mid])
                mid_mul_node3 = node.createMulNode(
                    [mid_mul_node2.outputX, mid_mul_node2.outputY], [
                        dm_node_scl.attr("outputScaleX"),
                        dm_node_scl.attr("outputScaleY")
                    ])
                tip_mul_node = node.createMulNode(
                    [self.tip_wide_att, self.tip_depth_att],
                    [self.tip_wide_in_att, self.tip_depth_in_att])
                tip_mul_node2 = node.createMulNode(
                    [tip_mul_node.outputX, tip_mul_node.outputY], [u, u])
                node.createPlusMinusAverage1D([
                    mid_mul_node3.outputX, 1.0 - u_mid, tip_mul_node2.outputX,
                    1.0 - u, -1.0
                ], 1, self.div_cns[i].attr("sy"))
                node.createPlusMinusAverage1D([
                    mid_mul_node3.outputY, 1.0 - u_mid, tip_mul_node2.outputY,
                    1.0 - u, -1.0
                ], 1, self.div_cns[i].attr("sz"))

                # Connect Twist "cns.frontTwist"
                twist_mul_node = node.createMulNode(
                    [self.mid_twist_att, self.tip_twist_att], [u_mid, u])
                twist_mul_node2 = node.createMulNode(
                    [self.mid_twist_in_att, self.tip_twist_in_att], [u_mid, u])
                node.createPlusMinusAverage1D([
                    twist_mul_node.outputX,
                    twist_mul_node.outputY,
                    twist_mul_node2.outputX,
                    twist_mul_node2.outputY,
                ], 1, cns.frontTwist)

                # u_mid calc
                if u_mid >= 1.0 or pass_mid:
                    u_mid -= step_mid
                    pass_mid = True
                else:
                    u_mid += step_mid

                if u_mid > 1.0:
                    u_mid = 1.0

                # ensure the tip is never affected byt the mid
                if i == (self.def_number - 1):
                    u_mid = 0.0
                u += step

            if self.settings["keepLength"]:
                # add the safty distance offset
                self.tweakTip_npo.attr("tx").set(self.off_dist)
                # connect vis line ref
                for shp in self.line_ref.getShapes():
                    pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        # CONNECT STACK
        # master components
        mstr_global = self.settings["masterChainGlobal"]
        mstr_local = self.settings["masterChainLocal"]
        if mstr_global:
            mstr_global = self.rig.components[mstr_global]
        if mstr_local:
            mstr_local = self.rig.components[mstr_local]

        # connect twist and scale
        if mstr_global and mstr_local:
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_twist_out, mstr_local.root.mid_twist_out
            ], 1, self.mid_twist_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_twist_out, mstr_local.root.tip_twist_out
            ], 1, self.tip_twist_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_wide_out, mstr_local.root.mid_wide_out, -1
            ], 1, self.mid_wide_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_wide_out, mstr_local.root.tip_wide_out, -1
            ], 1, self.tip_wide_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.mid_depth_out, mstr_local.root.mid_depth_out,
                -1
            ], 1, self.mid_depth_in_att)
            node.createPlusMinusAverage1D([
                mstr_global.root.tip_depth_out, mstr_local.root.tip_depth_out,
                -1
            ], 1, self.tip_depth_in_att)
        elif mstr_local or mstr_global:
            for master_chain in [mstr_local, mstr_global]:
                if master_chain:
                    pm.connectAttr(master_chain.root.mid_twist_out,
                                   self.mid_twist_in_att)
                    pm.connectAttr(master_chain.root.tip_twist_out,
                                   self.tip_twist_in_att)
                    pm.connectAttr(master_chain.root.mid_wide_out,
                                   self.mid_wide_in_att)
                    pm.connectAttr(master_chain.root.tip_wide_out,
                                   self.tip_wide_in_att)
                    pm.connectAttr(master_chain.root.mid_depth_out,
                                   self.mid_depth_in_att)
                    pm.connectAttr(master_chain.root.tip_depth_out,
                                   self.tip_depth_in_att)
        # connect the fk chain ctls
        for e, ctl in enumerate(self.fk_ctl):
            # connect out
            out_loc = self.fk_local_out[e]
            applyop.gear_mulmatrix_op(ctl.attr("worldMatrix"),
                                      out_loc.attr("parentInverseMatrix[0]"),
                                      out_loc)
            out_glob = self.fk_global_out[e]
            out_ref = self.fk_global_ref[e]
            applyop.gear_mulmatrix_op(out_ref.attr("worldMatrix"),
                                      out_glob.attr("parentInverseMatrix[0]"),
                                      out_glob)
            # connect in global
            if mstr_global:
                self.connect_master(mstr_global.fk_global_out,
                                    self.fk_global_in, e,
                                    self.settings["cnxOffset"])

            # connect in local
            if mstr_local:
                self.connect_master(mstr_local.fk_local_out, self.fk_local_in,
                                    e, self.settings["cnxOffset"])

            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        if self.settings["extraTweak"]:
            for tweak_ctl in self.extratweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))
コード例 #9
0
    def addFkOperator(self, i, rootWorld_node, crv_node):

        if i == 0 and self.settings["isSplitHip"]:
            s = self.fk_hip_ctl
            d = self.fk_local_npo[0],
            # maintainOffset, skipRotate, skipTranslate
            _ = pm.parentConstraint(s, d, mo=True, sr=("x", "y", "z"), st=())

            s = self.ik_global_out[0]
            d = self.hip_fk_local_in,
            # maintainOffset, skipRotate, skipTranslate
            pm.parentConstraint(s, d, mo=True)

        # break FK hierarchical orient
        if i not in [len(self.guide.apos), 0]:
            s = self.fk_ctl[i - 1]
            s2 = self.fk_npo[i]
            d = self.fk_local_npo[i]

            mulmat_node = applyop.gear_mulmatrix_op(s2.attr("matrix"), s.attr("matrix"))
            mulmat_node2 = applyop.gear_mulmatrix_op(mulmat_node.attr("output"), s2.attr("inverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node2 + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", d.attr("t"))

            check_list = (pm.Attribute, unicode, str)  # noqa
            cond = pm.createNode("condition")
            pm.setAttr(cond + ".operation", 4)  # greater
            attribute.connectSet(self.fk_collapsed_att, cond + ".secondTerm", check_list)
            attribute.connectSet(dm_node + ".outputRotate", cond + ".colorIfTrue", check_list)
            pm.setAttr(cond + ".colorIfFalseR", 0.)
            pm.setAttr(cond + ".colorIfFalseG", 0.)
            pm.setAttr(cond + ".colorIfFalseB", 0.)
            pm.connectAttr(cond + ".outColor", d.attr("r"))

        # References
        if i == 0:  # we add extra 10% to the first position
            u = (1.0 / (len(self.guide.apos) - 1.0)) / 1000
        else:
            u = getCurveUAtPoint(self.slv_crv, self.guide.apos[i])

        tmp_div_npo_transform = getTransform(self.div_cns_npo[i])  # to fix mismatch before/after later
        cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
        cns.setAttr("frontAxis", 1)  # front axis is 'Y'
        cns.setAttr("upAxis", 0)  # front axis is 'X'

        # Roll
        # choose ik_ctls
        for _i, uv in enumerate(self.ik_uv_param):
            if u < uv:

                ik_a = self.ik_ctl[_i - 1]
                ik_b = self.ik_ctl[_i]

                if self.settings["isSplitHip"] and i == 0:
                    u = (i + 1) / (len(self.guide.apos) - 1.0)
                    ratio = u / uv * .5

                else:
                    ratio = u / uv

                break

        else:
            ik_a = self.ik_ctl[-2]
            ik_b = self.ik_ctl[-1]
            ratio = 1.

        intMatrix = applyop.gear_intmatrix_op(
            ik_a + ".worldMatrix",
            ik_b + ".worldMatrix",
            ratio)

        dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
        pm.connectAttr(dm_node + ".outputRotate", self.twister[i].attr("rotate"))
        pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)

        pm.connectAttr(self.ref_twist[i] + ".translate", cns + ".worldUpVector")
        self.div_cns_npo[i].setMatrix(tmp_div_npo_transform, worldSpace=True)

        # compensate scale reference
        div_node = node.createDivNode(
            [1, 1, 1],
            [rootWorld_node + ".outputScaleX",
             rootWorld_node + ".outputScaleY",
             rootWorld_node + ".outputScaleZ"])

        # Squash n Stretch
        op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                            self.root,
                                            pm.arclen(self.slv_crv),
                                            "y",
                                            div_node + ".output")

        pm.connectAttr(self.volume_att, op + ".blend")
        pm.connectAttr(crv_node + ".arcLength", op + ".driver")
        pm.connectAttr(self.st_att[i], op + ".stretch")
        pm.connectAttr(self.sq_att[i], op + ".squash")

        # Controlers
        tmp_local_npo_transform = getTransform(self.fk_local_npo[i])  # to fix mismatch before/after later
        if i == 0:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_cns_npo[i].attr("worldMatrix"),
                self.root.attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))

        else:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_cns_npo[i].attr("worldMatrix"),
                self.div_cns_npo[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            mul_node = node.createMulNode(div_node + ".output", dm_node + ".outputTranslate")
            pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

        pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
        self.addOperatorsOrientationLock(i, cns)
        self.fk_local_npo[i].setMatrix(tmp_local_npo_transform, worldSpace=True)

        # References
        if i < (len(self.fk_ctl) - 1):
            aim = pm.aimConstraint(self.div_cns_npo[i + 1], self.div_cns_npo[i], maintainOffset=False)
            pm.setAttr(aim + ".aimVectorX", 0)
            pm.setAttr(aim + ".aimVectorY", 1)
            pm.setAttr(aim + ".aimVectorZ", 0)
            pm.setAttr(aim + ".upVectorX", 0)
            pm.setAttr(aim + ".upVectorY", 1)
            pm.setAttr(aim + ".upVectorZ", 0)
コード例 #10
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
        if self.settings["keepLength"]:
            arclen_node = pm.arclen(self.mst_crv, ch=True)
            alAttr = pm.getAttr(arclen_node + ".arcLength")
            ration_node = node.createMulNode(self.length_ratio_att, alAttr)

            pm.addAttr(self.mst_crv, ln="length_ratio", k=True, w=True)
            node.createDivNode(arclen_node.arcLength, ration_node.outputX,
                               self.mst_crv.length_ratio)

            div_node_scl = node.createDivNode(self.mst_crv.length_ratio,
                                              dm_node_scl.outputScaleX)

        step = 1.000 / (self.def_number - 1)
        u = 0.000
        for i in range(self.def_number):
            cnsUpv = applyop.pathCns(self.upv_cns[i],
                                     self.upv_crv,
                                     cnsType=False,
                                     u=u,
                                     tangent=False)

            cns = applyop.pathCns(self.div_cns[i], self.mst_crv, False, u,
                                  True)

            # Connectiong the scale for scaling compensation
            for axis, AX in zip("xyz", "XYZ"):
                pm.connectAttr(dm_node_scl.attr("outputScale{}".format(AX)),
                               self.div_cns[i].attr("s{}".format(axis)))

            if self.settings["keepLength"]:

                div_node2 = node.createDivNode(u, div_node_scl.outputX)

                cond_node = node.createConditionNode(div_node2.input1X,
                                                     div_node2.outputX, 4,
                                                     div_node2.input1X,
                                                     div_node2.outputX)

                pm.connectAttr(cond_node + ".outColorR", cnsUpv + ".uValue")
                pm.connectAttr(cond_node + ".outColorR", cns + ".uValue")

            cns.setAttr("worldUpType", 1)
            cns.setAttr("frontAxis", 0)
            cns.setAttr("upAxis", 1)

            pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                           cns.attr("worldUpMatrix"))
            u += step

        if self.settings["keepLength"]:
            # add the safty distance offset
            self.tweakTip_npo.attr("tx").set(self.off_dist)
            # connect vis line ref
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))
        for ctl in self.fk_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))

        if self.settings["extraTweak"]:
            for tweak_ctl in self.extratweak_ctl:
                for shp in tweak_ctl.getShapes():
                    pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))
コード例 #11
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(
            self.slv_crv, self.mst_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.lenght_att, op + ".maxstretch")

        op = applyop.gear_curveslide2_op(
            self.slv_upv_crv, self.upv_crv, 0, 1.5, .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.lenght_att, op + ".maxstretch")

        for tang in self.tangentsCtl:
            for shp in tang.getShapes():
                pm.connectAttr(self.tangentsVis_att, shp.attr("visibility"))

        for twnpo, fkctl in zip(self.tweak_npo, self.fk_ctl):
            intMatrix = applyop.gear_intmatrix_op(
                fkctl.attr("worldMatrix"),
                fkctl.getParent().attr("worldMatrix"),
                .5)

            applyop.gear_mulmatrix_op(intMatrix.attr("output"),
                                      twnpo.attr("parentInverseMatrix[0]"),
                                      twnpo)

        dm_node_scl = node.createDecomposeMatrixNode(self.root.worldMatrix)
        if self.settings["keepLength"]:
            arclen_node = pm.arclen(self.slv_crv, ch=True)
            alAttr = pm.getAttr(arclen_node + ".arcLength")

            pm.addAttr(self.slv_crv, ln="length_ratio", k=True, w=True)
            node.createDivNode(arclen_node.arcLength,
                               alAttr,
                               self.slv_crv.length_ratio)

            div_node_scl = node.createDivNode(self.slv_crv.length_ratio,
                                              dm_node_scl.outputScaleX)

        step = 1.000 / (self.def_number - 1)
        u = 0.000
        for i in range(self.def_number):
            mult_node = node.createMulNode(u, self.lenght_att)
            cnsUpv = applyop.pathCns(self.upv_cns[i],
                                     self.slv_upv_crv,
                                     cnsType=False,
                                     u=u,
                                     tangent=False)
            pm.connectAttr(mult_node.outputX, cnsUpv.uValue)

            cns = applyop.pathCns(
                self.div_cns[i], self.slv_crv, False, u, True)
            pm.connectAttr(mult_node.outputX, cns.uValue)

            # Connectiong the scale for scaling compensation
            for axis, AX in zip("xyz", "XYZ"):
                pm.connectAttr(dm_node_scl.attr("outputScale{}".format(AX)),
                               self.div_cns[i].attr("s{}".format(axis)))

            if self.settings["keepLength"]:

                div_node2 = node.createDivNode(u, div_node_scl.outputX)

                cond_node = node.createConditionNode(div_node2.input1X,
                                                     div_node2.outputX,
                                                     4,
                                                     div_node2.input1X,
                                                     div_node2.outputX)

                # pm.connectAttr(cond_node + ".outColorR",
                #                cnsUpv + ".uValue")
                # pm.connectAttr(cond_node + ".outColorR",
                #                cns + ".uValue")
                pm.connectAttr(cond_node + ".outColorR",
                               mult_node + ".input1X", f=True)

            # Connect the scaling for self.Extra_tweak_npo
            et_npo = self.Extra_tweak_npo[i]
            pm.connectAttr(self.spin_att, et_npo + ".rz")

            base_node = node.createMulNode(self.baseSize_att, 1.00000 - u, output=None)
            tip_node = node.createMulNode(self.tipSize_att, u, output=None)
            sum_node = node.createPlusMinusAverage1D([base_node.outputX, tip_node.outputX])
            # print et_npo
            pm.connectAttr(sum_node.output1D, et_npo.scaleX, f=True)
            pm.connectAttr(sum_node.output1D, et_npo.scaleY, f=True)
            pm.connectAttr(sum_node.output1D, et_npo.scaleZ, f=True)

            cns.setAttr("worldUpType", 1)
            cns.setAttr("frontAxis", 0)
            cns.setAttr("upAxis", 1)

            pm.connectAttr(self.upv_cns[i].attr("worldMatrix[0]"),
                           cns.attr("worldUpMatrix"))
            u += step

        for et in self.Extra_tweak_ctl:
            for shp in et.getShapes():
                pm.connectAttr(self.tweakVis_att, shp.attr("visibility"))

        if self.settings["keepLength"]:
            # add the safty distance offset
            self.tweakTip_npo.attr("tx").set(self.off_dist)
            # connect vis line ref
            for shp in self.line_ref.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))

        for ctl in self.tweak_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.ikVis_att, shp.attr("visibility"))
        for ctl in self.fk_ctl:
            for shp in ctl.getShapes():
                pm.connectAttr(self.fkVis_att, shp.attr("visibility"))
コード例 #12
0
    def addFkOperator(self, i, rootWorld_node, crv_node):

        fk_local_npo_xfoms = []
        if i not in [len(self.guide.apos), 0]:
            xform = getTransform(self.fk_local_npo[i])
            fk_local_npo_xfoms.append(xform)

        # break FK hierarchical orient
        if i not in [len(self.guide.apos), 0]:
            s = self.fk_ctl[i - 1]
            s2 = self.fk_npo[i]
            d = self.fk_local_npo[i]

            mulmat_node = applyop.gear_mulmatrix_op(s2.attr("matrix"), s.attr("matrix"))
            mulmat_node2 = applyop.gear_mulmatrix_op(mulmat_node.attr("output"), s2.attr("inverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node2 + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", d.attr("t"))

            check_list = (pm.Attribute, unicode, str)  # noqa
            cond = pm.createNode("condition")
            pm.setAttr(cond + ".operation", 4)  # greater
            attribute.connectSet(self.fk_collapsed_att, cond + ".secondTerm", check_list)
            attribute.connectSet(dm_node + ".outputRotate", cond + ".colorIfTrue", check_list)
            pm.setAttr(cond + ".colorIfFalseR", 0.)
            pm.setAttr(cond + ".colorIfFalseG", 0.)
            pm.setAttr(cond + ".colorIfFalseB", 0.)
            pm.connectAttr(cond + ".outColor", d.attr("r"))

        # References
        if i == 0:  # we add extra 10% to the first position
            u = (1.0 / (len(self.guide.apos) - 1.0)) / 10000
        else:
            u = getCurveUAtPoint(self.slv_crv, self.guide.apos[i])

        tmp_div_npo_transform = getTransform(self.div_cns_npo[i])  # to fix mismatch before/after later
        cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u, True)
        cns.setAttr("frontAxis", 1)  # front axis is 'Y'
        cns.setAttr("upAxis", 0)  # front axis is 'X'

        # Roll
        # choose ik_ctls
        for _i, uv in enumerate(self.ik_uv_param):
            if u < uv:

                ik_a = self.ik_ctl[_i - 1]
                ik_b = self.ik_ctl[_i]

                roll_a = self.ik_decompose_rot[_i - 1]
                roll_b = self.ik_decompose_rot[_i]

                ratio = (uv - u) * (self.settings["ikNb"] - 1)
                break

        else:
            ik_a = self.ik_ctl[-2]
            ik_b = self.ik_ctl[-1]

            roll_a = self.ik_decompose_rot[-2]
            roll_b = self.ik_decompose_rot[-1]

            ratio = 1.

        intMatrix = applyop.gear_intmatrix_op(
            ik_a + ".worldMatrix",
            ik_b + ".worldMatrix",
            ratio)

        dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
        # pm.connectAttr(dm_node + ".outputRotate", self.twister[i].attr("rotate"))
        pm.parentConstraint(self.twister[i], self.ref_twist[i], maintainOffset=True)

        pm.connectAttr(self.ref_twist[i] + ".translate", cns + ".worldUpVector")
        self.div_cns_npo[i].setMatrix(tmp_div_npo_transform, worldSpace=True)

        # rotationdriver
        roll_ratio = (i + 1.00) / len(self.fk_ctl)
        mul1 = pm.createNode("multDoubleLinear")
        pm.connectAttr(roll_a.attr("outRoll"), mul1.attr("input1"))
        pm.setAttr(mul1.attr("input2"), ratio)

        mul2 = pm.createNode("multDoubleLinear")
        pm.connectAttr(roll_b.attr("outRoll"), mul2.attr("input1"))
        pm.setAttr(mul2.attr("input2"), (1. - ratio))

        add = pm.createNode("addDoubleLinear")
        pm.connectAttr(mul1.attr("output"), add.attr("input1"))
        pm.connectAttr(mul2.attr("output"), add.attr("input2"))

        compose_rot = pm.createNode("composeRotate")
        pm.setAttr(compose_rot.attr("axisOrientX"), 90.0)
        pm.setAttr(compose_rot.attr("axisOrientZ"), 90.0)
        pm.connectAttr(add.attr("output"), compose_rot.attr("roll"))
        pm.connectAttr(compose_rot.attr("outRotate"), self.div_roll_npo[i].attr("rotate"))

        # compensate scale reference
        div_node = node.createDivNode(
            [1, 1, 1],
            [rootWorld_node + ".outputScaleX",
             rootWorld_node + ".outputScaleY",
             rootWorld_node + ".outputScaleZ"])

        # Squash n Stretch
        op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                            self.root,
                                            pm.arclen(self.slv_crv),
                                            "y",
                                            div_node + ".output")

        pm.connectAttr(self.volume_att, op + ".blend")
        pm.connectAttr(crv_node + ".arcLength", op + ".driver")
        # pm.connectAttr(self.st_att[i], op + ".stretch")
        # pm.connectAttr(self.sq_att[i], op + ".squash")

        # Controlers
        tmp_local_npo_transform = getTransform(self.fk_local_npo[i])  # to fix mismatch before/after later
        if i == 0:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_roll_npo[i].attr("worldMatrix"),
                self.root.attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            pm.connectAttr(dm_node + ".outputTranslate", self.fk_npo[i].attr("t"))

        elif i != len(self.guide.apos) - 1:
            mulmat_node = applyop.gear_mulmatrix_op(
                self.div_roll_npo[i].attr("worldMatrix"),
                self.div_roll_npo[i - 1].attr("worldInverseMatrix"))

            dm_node = node.createDecomposeMatrixNode(mulmat_node + ".output")
            mul_node = node.createMulNode(div_node + ".output", dm_node + ".outputTranslate")
            pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

        else:
            pass

        if i == len(self.guide.apos) - 1:
            # pm.connectAttr(dm_node + ".outputRotate", self.fk_local_npo2.attr("r"))
            _ = pm.parentConstraint(self.ik_ctl[-1],
                                    self.fk_local_npo2,
                                    skipTranslate=("x", "y", "z"),
                                    maintainOffset=True)
        else:
            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))
        # self.addOperatorsOrientationLock(i, cns)
        self.fk_local_npo[i].setMatrix(tmp_local_npo_transform, worldSpace=True)

        # References
        if i < (len(self.fk_ctl) - 1):

            if self.negate:
                aim = (0., 1., 0.)
                upv = (0., 0., 1.)
            else:
                aim = (0., -1., 0.)
                upv = (0., 0., -1.)

            pm.aimConstraint(self.div_cns_npo[i + 1],
                             self.div_cns_npo[i],
                             mo=True,
                             worldUpType="object",
                             worldUpObject=self.fk_upvectors[i],
                             worldUpVector=(0., 1., 0.),
                             aimVector=aim,
                             upVector=upv,
                             )
コード例 #13
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Division -----------------------------------------
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))
        for i in range(self.settings["fkNb"]):

            # References
            u = i / (self.settings["fkNb"] - 1.0)
            if i == 0:  # we add extra 10% to the first position
                u = (1.0 / (self.settings["fkNb"] - 1.0)) / 10

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 0)  # front axis is 'X'
            cns.setAttr("upAxis", 2)  # front axis is 'Z'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik_ctl[0] + ".worldMatrix",
                self.ik_ctl[-1] + ".worldMatrix", u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl[0] +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], 0)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["fkNb"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik_ctl[-1] +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], 0)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")
コード例 #14
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[0], self.guide.apos[1])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, False, u,
                                  True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

        # Connections (Hooks) ------------------------------
        pm.pointConstraint(self.scl_transforms[0], self.cnx0)
        pm.scaleConstraint(self.scl_transforms[0], self.cnx0)
        pm.orientConstraint(self.ik0_ctl, self.cnx0)
        pm.pointConstraint(self.scl_transforms[-1], self.cnx1)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)
        pm.orientConstraint(self.ik1_ctl, self.cnx1)
コード例 #15
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Auto bend ----------------------------
        if self.settings["autoBend"]:
            mul_node = node.createMulNode(
                [self.autoBendChain[0].ry, self.autoBendChain[0].rz],
                [self.sideBend_att, self.frontBend_att])

            mul_node.outputX >> self.ik1autoRot_lvl.rz
            mul_node.outputY >> self.ik1autoRot_lvl.rx

            self.ikHandleAutoBend = primitive.addIkHandle(
                self.autoBend_ctl, self.getName("ikHandleAutoBend"),
                self.autoBendChain, "ikSCsolver")

        # Tangent position ---------------------------------
        # common part
        d = vector.getDistance(self.guide.apos[1], self.guide.apos[-2])
        dist_node = node.createDistNode(self.ik0_ctl, self.ik1_ctl)
        rootWorld_node = node.createDecomposeMatrixNode(
            self.root.attr("worldMatrix"))

        div_node = node.createDivNode(dist_node + ".distance",
                                      rootWorld_node + ".outputScaleX")

        div_node = node.createDivNode(div_node + ".outputX", d)

        # tan0
        mul_node = node.createMulNode(self.tan0_att,
                                      self.tan0_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan0_npo.attr("ty"))

        # tan1
        mul_node = node.createMulNode(self.tan1_att,
                                      self.tan1_npo.getAttr("ty"))

        res_node = node.createMulNode(mul_node + ".outputX",
                                      div_node + ".outputX")

        pm.connectAttr(res_node + ".outputX", self.tan1_npo.attr("ty"))

        # Tangent Mid --------------------------------------
        if self.settings["centralTangent"]:
            tanIntMat = applyop.gear_intmatrix_op(
                self.tan0_npo.attr("worldMatrix"),
                self.tan1_npo.attr("worldMatrix"), .5)

            applyop.gear_mulmatrix_op(
                tanIntMat.attr("output"),
                self.tan_npo.attr("parentInverseMatrix[0]"), self.tan_npo)

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan0_off.attr("translate"))

            pm.connectAttr(self.tan_ctl.attr("translate"),
                           self.tan1_off.attr("translate"))

        # Curves -------------------------------------------
        op = applyop.gear_curveslide2_op(self.slv_crv, self.mst_crv, 0, 1.5,
                                         .5, .5)

        pm.connectAttr(self.position_att, op + ".position")
        pm.connectAttr(self.maxstretch_att, op + ".maxstretch")
        pm.connectAttr(self.maxsquash_att, op + ".maxsquash")
        pm.connectAttr(self.softness_att, op + ".softness")

        # Volume driver ------------------------------------
        crv_node = node.createCurveInfoNode(self.slv_crv)

        # Division -----------------------------------------
        tangents = [None, "tan0", "tan1"]
        for i in range(self.settings["division"]):

            # References
            u = i / (self.settings["division"] - 1.0)

            # check the indx to calculate mid point based on number of division
            # we want to use the same spine for mannequin and metahuman spine
            if self.settings["division"] == 4 and i in [1, 2]:
                u_param = curve.getCurveParamAtPosition(
                    self.slv_crv, self.guide.pos[tangents[i]])[0]
                cnsType = True
            elif self.settings["division"] == 3 and i in [1]:
                u_param = curve.getCurveParamAtPosition(
                    self.slv_crv, self.guide.pos[tangents[i]])[0]
                cnsType = True
            else:
                u_param = u
                cnsType = False

            cns = applyop.pathCns(self.div_cns[i], self.slv_crv, cnsType,
                                  u_param, True)

            cns.setAttr("frontAxis", 1)  # front axis is 'Y'
            cns.setAttr("upAxis", 0)  # front axis is 'X'

            # Roll
            intMatrix = applyop.gear_intmatrix_op(
                self.ik0_ctl + ".worldMatrix", self.ik1_ctl + ".worldMatrix",
                u)

            dm_node = node.createDecomposeMatrixNode(intMatrix + ".output")
            pm.connectAttr(dm_node + ".outputRotate",
                           self.twister[i].attr("rotate"))

            pm.parentConstraint(self.twister[i],
                                self.ref_twist[i],
                                maintainOffset=True)

            pm.connectAttr(self.ref_twist[i] + ".translate",
                           cns + ".worldUpVector")

            # compensate scale reference
            div_node = node.createDivNode([1, 1, 1], [
                rootWorld_node + ".outputScaleX", rootWorld_node +
                ".outputScaleY", rootWorld_node + ".outputScaleZ"
            ])

            # Squash n Stretch
            op = applyop.gear_squashstretch2_op(self.scl_transforms[i],
                                                self.root,
                                                pm.arclen(self.slv_crv), "y",
                                                div_node + ".output")

            pm.connectAttr(self.volume_att, op + ".blend")
            pm.connectAttr(crv_node + ".arcLength", op + ".driver")
            pm.connectAttr(self.st_att[i], op + ".stretch")
            pm.connectAttr(self.sq_att[i], op + ".squash")

            # Controlers
            if i == 0:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.root.attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                pm.connectAttr(dm_node + ".outputTranslate",
                               self.fk_npo[i].attr("t"))

            else:
                mulmat_node = applyop.gear_mulmatrix_op(
                    self.div_cns[i].attr("worldMatrix"),
                    self.div_cns[i - 1].attr("worldInverseMatrix"))

                dm_node = node.createDecomposeMatrixNode(mulmat_node +
                                                         ".output")

                mul_node = node.createMulNode(div_node + ".output",
                                              dm_node + ".outputTranslate")

                pm.connectAttr(mul_node + ".output", self.fk_npo[i].attr("t"))

            pm.connectAttr(dm_node + ".outputRotate", self.fk_npo[i].attr("r"))

            # Orientation Lock
            if i == 0:
                dm_node = node.createDecomposeMatrixNode(self.ik0_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori0_att)

                self.div_cns[i].attr("rotate").disconnect()

                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

            elif i == self.settings["division"] - 1:
                dm_node = node.createDecomposeMatrixNode(self.ik1_ctl +
                                                         ".worldMatrix")

                blend_node = node.createBlendNode(
                    [dm_node + ".outputRotate%s" % s for s in "XYZ"],
                    [cns + ".rotate%s" % s for s in "XYZ"], self.lock_ori1_att)

                self.div_cns[i].attr("rotate").disconnect()
                pm.connectAttr(blend_node + ".output",
                               self.div_cns[i] + ".rotate")

        # change parent after operators applied
        pm.parent(self.scl_transforms[-1], self.fk_ctl[-1])

        # Connections (Hooks) ------------------------------
        pm.parentConstraint(self.pelvis_lvl, self.cnx0)
        pm.scaleConstraint(self.pelvis_lvl, self.cnx0)

        transform.matchWorldTransform(self.scl_transforms[-1], self.cnx1)
        t = transform.setMatrixPosition(transform.getTransform(self.cnx1),
                                        self.guide.apos[-1])
        self.cnx1.setMatrix(t, worldSpace=True)
        pm.parentConstraint(self.scl_transforms[-1], self.cnx1, mo=True)
        pm.scaleConstraint(self.scl_transforms[-1], self.cnx1)