コード例 #1
0
ファイル: community.py プロジェクト: sndean/micom
    def set_abundance(self, value, normalize=True):
        """Change abundances for one or more taxa.

        Parameters
        ----------
        value : array-like object
            The new abundances. Must contain one value for each taxon. Can
            be a named object like a pandas Series.
        normalize : boolean, optional
            Whether to normalize the abundances to a total of 1.0. Many things
            in micom asssume that this is always the case. Only change this
            if you know what you are doing :O
        """
        try:
            self.__taxonomy.abundance = value
        except Exception:
            raise ValueError("value must be an iterable with an entry for "
                             "each species/tissue")

        logger.info("setting new abundances for %s" % self.id)
        ab = self.__taxonomy.abundance
        if normalize:
            self.__taxonomy.abundance /= ab.sum()
            small = ab < self._rtol
            logger.info("adjusting abundances for %s to %g" %
                        (str(self.__taxonomy.index[small]), self._rtol))
            self.__taxonomy.loc[small, "abundance"] = self._rtol
        self.__update_exchanges()
        self.__update_community_objective()
コード例 #2
0
ファイル: _growth.py プロジェクト: Gibbons-Lab/q2-micom
def _growth(args):
    p, tradeoff, medium = args
    com = load_pickle(p)
    ex_ids = [r.id for r in com.exchanges]
    logger.info(
        "%d/%d import reactions found in model.",
        medium.index.isin(ex_ids).sum(),
        len(medium),
    )
    com.medium = medium[medium.index.isin(ex_ids)]

    # Get growth rates
    try:
        sol = com.cooperative_tradeoff(fraction=tradeoff)
        rates = sol.members
        rates["taxon"] = rates.index
        rates["tradeoff"] = tradeoff
        rates["sample_id"] = com.id
    except Exception:
        logger.warning("Could not solve cooperative tradeoff for %s." % com.id)
        return None

    # Get the minimal medium
    med = minimal_medium(com, 0.95 * sol.growth_rate)

    # Apply medium and reoptimize
    com.medium = med[med > 0]
    sol = com.cooperative_tradeoff(fraction=tradeoff, fluxes=True, pfba=False)
    fluxes = sol.fluxes.loc[:, sol.fluxes.columns.str.startswith("EX_")].copy()
    fluxes["sample_id"] = com.id
    return {"growth": rates, "exchanges": fluxes}
コード例 #3
0
def _apply_min_growth(community, min_growth, atol=1e-6, rtol=1e-6):
    """Set minimum growth constraints on a model.

    Will integrate with the context.
    """
    context = get_context(community)

    def reset(taxon, lb):
        logger.info("resetting growth rate constraint for %s" % taxon)
        community.constraints["objective_" + taxon].ub = None
        community.constraints["objective_" + taxon].lb = lb

    for sp in community.taxa:
        logger.info("setting growth rate constraint for %s" % sp)
        obj = community.constraints["objective_" + sp]
        if context:
            context(partial(reset, sp, obj.lb))
        if min_growth[sp] > atol:
            obj.lb = (1.0 - rtol) * min_growth[sp] - atol
        else:
            logger.info(
                "minimal growth rate smaller than tolerance,"
                " setting to zero."
            )
            obj.lb = 0
コード例 #4
0
def solve(community,
          fluxes=True,
          pfba=True,
          raise_error=False,
          atol=1e-6,
          rtol=1e-6):
    """Get all fluxes stratified by taxa."""
    community.solver.optimize()
    status = community.solver.status
    if status in good:
        if status != OPTIMAL:
            if raise_error:
                raise OptimizationError("solver returned the status %s." %
                                        status)
            else:
                logger.info("solver returned the status %s," % status +
                            " returning the solution anyway.")
        if fluxes and pfba:
            add_pfba_objective(community, atol, rtol)
            community.solver.optimize()
        if fluxes:
            sol = CommunitySolution(community)
        else:
            sol = CommunitySolution(community, slim=True)
        return sol
    logger.warning("solver encountered an error %s" % status)
    return None
コード例 #5
0
def _try_complete(args):
    """Try to complete the medium for a model."""
    file, med, growth, max_import, mip, w = args
    mod = load_model(file)
    exc = find_external_compartment(mod)
    try:
        fixed = mm.complete_medium(mod,
                                   med,
                                   growth,
                                   max_import=max_import,
                                   minimize_components=mip,
                                   weights=w)
        added = sum(i not in med.index for i in fixed.index)
        can_grow = True
        logger.info("Could grow `%s` by adding %d import." % (file, added))
    except OptimizationError:
        fixed = pd.Series(float("nan"), index=med.index)
        added = float("nan")
        can_grow = False
        logger.info("Could not grow `%s`." % file)
    fixed.index = [
        re.sub(
            "(_{}$)|([^a-zA-Z0-9 :]{}[^a-zA-Z0-9 :]$)".format(exc, exc),
            "_m",
            rid,
        ) for rid in fixed.index
    ]

    return (can_grow, added, fixed)
コード例 #6
0
ファイル: _tradeoff.py プロジェクト: Gibbons-Lab/q2-micom
def _tradeoff(args):
    p, tradeoffs, medium = args
    com = load_pickle(p)
    ex_ids = [r.id for r in com.exchanges]
    logger.info(
        "%d/%d import reactions found in model.",
        medium.index.isin(ex_ids).sum(),
        len(medium),
    )
    com.medium = medium[medium.index.isin(ex_ids)]
    sol = com.optimize()
    rates = sol.members
    rates["taxon"] = rates.index
    rates["tradeoff"] = np.nan
    rates["sample_id"] = com.id
    df = [rates]

    # Get growth rates
    try:
        sol = com.cooperative_tradeoff(fraction=tradeoffs)
    except Exception as e:
        logger.warning("Sample %s could not be optimized\n %s" %
                       (com.id, str(e)))
        return None
    for i, s in enumerate(sol.solution):
        rates = s.members
        rates["taxon"] = rates.index
        rates["tradeoff"] = sol.tradeoff[i]
        rates["sample_id"] = com.id
        df.append(rates)
    df = pd.concat(df)
    return df[df.taxon != "medium"]
コード例 #7
0
def serialize_models(files, dir="."):
    """Convert several models to Python pickles."""
    for f in files:
        fname = path.basename(f).split(".")[0]
        model = load_model(f)
        logger.info("serializing {}".format(f))
        pickle.dump(model, open(path.join(dir, fname + ".pickle"), "wb"),
                    protocol=2)  # required for Python 2 compat
コード例 #8
0
def euclidean(inclusion):
    """Calculate euclidean distances for a community."""
    logger.info("calculating euclidean distance for {}x{} input matrix".format(
        *inclusion.shape))
    euclidean = np.apply_along_axis(lambda a: ((a - inclusion)**2).sum(1), 1,
                                    inclusion)

    return np.sqrt(euclidean)
コード例 #9
0
def _growth(args):
    p, tradeoff, medium, weights, atol, rtol = args
    com = load_pickle(p)

    if atol is None:
        atol = com.solver.configuration.tolerances.optimality
    if rtol is None:
        rtol = com.solver.configuration.tolerances.optimality

    com = load_pickle(p)

    if "glpk" in interface_to_str(com.solver.interface):
        logger.error(
            "Community models were not built with a QP-capable solver. "
            "This means that you did not install CPLEX or Gurobi. "
            "If you did install one of the two please file a bug report "
            "at https://github.com/micom-dev/micom/issues."
        )
        return None

    ex_ids = [r.id for r in com.exchanges]
    logger.info(
        "%d/%d import reactions found in model.",
        medium.index.isin(ex_ids).sum(),
        len(medium),
    )
    com.medium = medium[medium.index.isin(ex_ids)]

    # Get growth rates
    try:
        sol = com.cooperative_tradeoff(fraction=tradeoff)
        rates = sol.members
        rates["taxon"] = rates.index
        rates["tradeoff"] = tradeoff
        rates["sample_id"] = com.id
    except Exception:
        logger.warning(
            "Could not solve cooperative tradeoff for %s. "
            "This can often be fixed by chosing ore permissive atol and rtol "
            "arguments." % com.id)
        return None

    # Get the minimal medium and the solution at the same time
    sol = minimal_medium(
        com,
        exchanges=None,
        community_growth=sol.growth_rate,
        min_growth=rates.growth_rate.drop("medium"),
        solution=True,
        weights=weights,
        atol=atol,
        rtol=rtol
    )["solution"]
    fluxes = sol.fluxes.loc[:, sol.fluxes.columns.str.startswith("EX_")].copy()
    fluxes["sample_id"] = com.id
    fluxes["tolerance"] = atol
    anns = annotate_metabolites_from_exchanges(com)
    return {"growth": rates, "exchanges": fluxes, "annotations": anns}
コード例 #10
0
def jaccard(inclusion):
    """Calculate jaccard distances for a community."""
    logger.info("calculating jaccard distance for {}x{} input matrix".format(
        *inclusion.shape))
    jaccard = np.apply_along_axis(lambda a: (a & inclusion).sum(1), 1,
                                  inclusion)
    jaccard = jaccard / np.apply_along_axis(lambda a: (a | inclusion).sum(1),
                                            1, inclusion)

    return 1 - jaccard
コード例 #11
0
def reset_solver(community):
    """Reset the solver."""
    interface = interface_to_str(community.solver.interface)
    logger.info("resetting solver, hoping for the best.")
    if interface == "cplex":
        logger.warning("switching cplex LP algorithm to `network`.")
        community.solver.configuration.lp_method = "network"
    elif interface == "gurobi":
        community.solver.problem.reset()
    elif interface == "glpk":
        glp_adv_basis(community.solver.problem, 0)
コード例 #12
0
ファイル: community.py プロジェクト: sndean/micom
 def __update_exchanges(self):
     """Update exchanges."""
     logger.info("updating exchange reactions for %s" % self.id)
     for met in self.metabolites.query(lambda x: x.compartment == "m"):
         for r in met.reactions:
             if r.boundary:
                 continue
             coef = self.__taxonomy.loc[r.community_id, "abundance"]
             if met in r.products:
                 r.add_metabolites({met: coef}, combine=False)
             else:
                 r.add_metabolites({met: -coef}, combine=False)
コード例 #13
0
def reset_solver(community):
    """Reset the solver."""
    interface = interface_to_str(community.solver.interface)
    logger.info("resetting solver, hoping for the best.")
    if interface == "cplex":
        community.solver.configuration.lp_method = "network"
        community.solver.configuration.lp_method = "barrier"
    elif interface == "gurobi":
        community.solver.problem.reset()
    elif interface == "glpk":
        glp_adv_basis(community.solver.problem, 0)
    elif interface == "osqp":
        community.solver.problem.reset()
コード例 #14
0
def check_db_medium(model_db, medium, threads=1):
    """Complete a growth medium for all models in a database.

    Arguments
    ---------
    model_db : str
        A pre-built model database. If ending in `.qza` must be a Qiime 2
        artifact of type `MetabolicModels[JSON]`. Can also be a folder,
        zip (must end in `.zip`) file or None if the taxonomy contains a
        column `file`.
    medium : pd.DataFrame
        A growth medium. Must have columns "reaction" and "flux" denoting
        exchange reactions and their respective maximum flux. Can not be sample
        specific.
    threads : int >=1
        The number of parallel workers to use when building models. As a
        rule of thumb you will need around 1GB of RAM for each thread.

    Returns
    -------
    pd.DataFrame
        Returns an annotated manifest file with a column `can_grow` that tells you
        whether the model can grow on the (fixed) medium, and a column `growth_rate`
        that gives the growth rate.
    """
    medium = process_medium(medium, ["dummy"])
    medium.index = medium.global_id
    compressed = model_db.endswith(".qza") or model_db.endswith(".zip")
    if compressed:
        tdir = TemporaryDirectory(prefix="micom_")
    if model_db.endswith(".qza"):
        manifest = load_qiime_model_db(model_db, tdir.name)
    elif model_db.endswith(".zip"):
        manifest = load_zip_model_db(model_db, tdir.name)
    else:
        manifest = load_manifest(model_db)
    rank = manifest["summary_rank"][0]
    logger.info("Checking %d %s-level models on a medium with %d components." %
                (manifest.shape[0], rank, len(medium)))

    args = [(f, medium.flux) for f in manifest.file]
    results = workflow(_grow, args, threads)
    manifest["growth_rate"] = results
    manifest["can_grow"] = manifest.growth_rate.notna() & (manifest.growth_rate
                                                           > 1e-6)

    if compressed:
        tdir.cleanup()

    return manifest
コード例 #15
0
ファイル: community.py プロジェクト: sndean/micom
 def __update_community_objective(self):
     """Update the community objective."""
     logger.info("updating the community objective for %s" % self.id)
     v = self.variables.community_objective
     const = self.constraints.community_objective_equality
     self.remove_cons_vars([const])
     com_obj = Zero
     for sp in self.species:
         ab = self.__taxonomy.loc[sp, "abundance"]
         species_obj = self.constraints["objective_" + sp]
         com_obj += ab * species_obj.expression
     const = self.problem.Constraint((v - com_obj).expand(),
                                     lb=0,
                                     ub=0,
                                     name="community_objective_equality")
     self.add_cons_vars([const])
コード例 #16
0
def db_annotations(
    model_db,
    threads=1,
):
    """Get metabolite annotations from a model DB.

    Arguments
    ---------
    model_db : str
        A pre-built model database. If ending in `.qza` must be a Qiime 2
        artifact of type `MetabolicModels[JSON]`. Can also be a folder,
        zip (must end in `.zip`) file or None if the taxonomy contains a
        column `file`.
    threads : int >=1
        The number of parallel workers to use when building models. As a
        rule of thumb you will need around 1GB of RAM for each thread.

    Returns
    -------
    pd.DataFrame
        Annotations for all exchanged metabolites.
    """
    compressed = model_db.endswith(".qza") or model_db.endswith(".zip")
    if compressed:
        tdir = TemporaryDirectory(prefix="micom_")
    if model_db.endswith(".qza"):
        manifest = load_qiime_model_db(model_db, tdir.name)
    elif model_db.endswith(".zip"):
        manifest = load_zip_model_db(model_db, tdir.name)
    else:
        manifest = load_manifest(model_db)
    rank = manifest["summary_rank"][0]
    logger.info("Getting annotations from %d %s-level models ." %
                (manifest.shape[0], rank))

    args = manifest.file.tolist()
    results = workflow(_annotate, args, threads)
    anns = pd.concat(results).drop_duplicates()

    if compressed:
        tdir.cleanup()

    return anns
コード例 #17
0
ファイル: problems.py プロジェクト: Camille-Pignolet/micom
def knockout_taxa(
    community, taxa, fraction, method, progress, diag=True
):
    """Knockout a taxon from the community."""
    with community as com:
        check_modification(com)
        min_growth = _format_min_growth(0.0, com.taxa)
        _apply_min_growth(com, min_growth)

        com.objective = com.scale * com.variables.community_objective
        community_min_growth = (
            optimize_with_retry(com, "could not get community growth rate.")
            / com.scale
        )
        regularize_l2_norm(com, fraction * community_min_growth)
        old = com.optimize().members["growth_rate"]
        results = []

        iter = track(taxa, description="Knockouts") if progress else taxa
        for sp in iter:
            with com:
                logger.info("getting growth rates for " "%s knockout." % sp)
                [
                    r.knock_out()
                    for r in com.reactions.query(
                        lambda ri: ri.community_id == sp
                    )
                ]

                sol = optimize_with_fraction(com, fraction)
                new = sol.members["growth_rate"]
                if "change" in method:
                    new = new - old
                if "relative" in method:
                    new /= old
                results.append(new)

        ko = pd.DataFrame(results, index=taxa).drop("medium", 1)
        ko = ko.loc[ko.index.sort_values(), ko.columns.sort_values()]
        if not diag:
            np.fill_diagonal(ko.values, np.NaN)

        return ko
コード例 #18
0
def knockout_species(community,
                     species,
                     fraction,
                     method,
                     progress,
                     diag=True):
    """Knockout a species from the community."""
    with community as com:
        check_modification(com)
        min_growth = _format_min_growth(0.0, com.species)
        _apply_min_growth(com, min_growth)

        com.objective = 1000.0 * com.variables.community_objective
        community_min_growth = (
            optimize_with_retry(com, "could not get community growth rate.") /
            1000.0)
        regularize_l2_norm(com, fraction * community_min_growth)
        old = com.optimize().members["growth_rate"]
        results = []

        if progress:
            species = tqdm(species, unit="knockout(s)")
        for sp in species:
            with com:
                logger.info("getting growth rates for " "%s knockout." % sp)
                [
                    r.knock_out() for r in com.reactions.query(
                        lambda ri: ri.community_id == sp)
                ]

                sol = optimize_with_fraction(com, fraction)
                new = sol.members["growth_rate"]
                if "change" in method:
                    new = new - old
                if "relative" in method:
                    new /= old
                results.append(new)

        ko = pd.DataFrame(results, index=species).drop("medium", 1)
        if not diag:
            np.fill_diagonal(ko.values, np.NaN)

        return ko
コード例 #19
0
def fix_community_medium(
    tax,
    medium,
    min_growth=0.1,
    max_import=1,
    minimize_components=True,
    n_jobs=4,
):
    """Augment a growth medium so all community members can grow in it.

    Arguments
    ---------
    tax : pandas.Dataframe
        A taxonomy specification as passed to `micom.Community`.
    medium : pandas.Series
        A growth medium with exchange reaction IDs as index and positive
        import fluxes as values.
    min_growth : positive float
        The minimum biomass production required for growth.
    max_import : positive float
        The maximum import rate for added imports.
    minimize_components : boolean
        Whether to minimize the number of media components rather than the
        total flux.
    n_jobs: int
        The number of processes to use.

    Returns
    -------
    pandas.Series
        A new growth medium with the smallest amount of augmentations such
        that all members of the community can grow in it.

    """
    if medium[medium < 1e-6].any():
        medium[medium < 1e-6] = 1e-6
        logger.info(
            "Some import rates were to small and were adjusted to 1e-6.")
    args = [(row.id, row.file, medium, min_growth, max_import,
             minimize_components) for _, row in tax.iterrows()]
    res = workflow(_fix_medium, args, n_jobs=n_jobs, unit="model(s)")
    return pd.concat(res, axis=1).max(axis=1)
コード例 #20
0
ファイル: community.py プロジェクト: sndean/micom
    def optimize_single(self, id):
        """Optimize growth rate for one individual.

        `optimize_single` will calculate the maximal growth rate for one
        individual member of the community.

        Notes
        -----
        This might well mean that growth rates for all other individuals are
        low since the individual may use up all available resources.

        Parameters
        ----------
        id : str
            The ID of the individual to be optimized.
        fluxes : boolean, optional
            Whether to return all fluxes. Defaults to just returning the
            maximal growth rate.

        Returns
        -------
        float
            The maximal growth rate for the given species.

        """
        if isinstance(id, six.string_types):
            if id not in self.__taxonomy.index:
                raise ValueError(id + " not in taxonomy!")
            info = self.__taxonomy.loc[id]
        elif isinstance(id, int) and id >= 0 and id < len(self.__taxonomy):
            info = self.__taxonomy.iloc[id]
        else:
            raise ValueError("`id` must be an id or positive index!")

        logger.info("optimizing for {}".format(info.name))

        obj = self.constraints["objective_" + info.name]
        with self as m:
            m.objective = obj.expression
            m.solver.optimize()
            return m.objective.value
コード例 #21
0
def crossover(community, sol, fluxes=False, pfba=False):
    """Get the crossover solution."""
    gcs = sol.members.growth_rate.drop("medium")
    com_growth = sol.growth_rate
    logger.info("Starting crossover...")
    with community as com:
        logger.info("constraining growth rates.")
        context = get_context(community)
        if context is not None:
            context(partial(reset_min_community_growth, com))
        reset_min_community_growth(com)
        com.variables.community_objective.lb = 0.0
        com.variables.community_objective.ub = com_growth + 1e-6
        com.objective = 1000.0 * com.variables.community_objective
        for sp in com.species:
            const = com.constraints["objective_" + sp]
            const.ub = gcs[sp]
        logger.info("finding closest feasible solution")
        s = com.optimize()
        if s is None:
            reset_solver(com)
            s = com.optimize()
        if s is not None:
            s = CommunitySolution(com, slim=not fluxes)
        for sp in com.species:
            com.constraints["objective_" + sp].ub = None
    if s is None:
        raise OptimizationError("crossover could not converge (status = %s)." %
                                community.solver.status)
    s.objective_value /= 1000.0
    return s
コード例 #22
0
ファイル: problems.py プロジェクト: Camille-Pignolet/micom
def regularize_l2_norm(community, min_growth):
    """Add an objective to find the most "egoistic" solution.

    This adds an optimization objective finding a solution that maintains a
    (sub-)optimal community growth rate but is the closest solution to the
    community members individual maximal growth rates. So it basically finds
    the best possible tradeoff between maximizing community growth and
    individual (egoistic) growth. Here the objective is given as the sum of
    squared differences between the individuals current and maximal growth
    rate. In the linear case squares are substituted by absolute values
    (Manhattan distance).

    Arguments
    ---------
    community : micom.Community
        The community to modify.
    min_growth : positive float
        The minimal community growth rate that has to be mantained.
    linear : boolean
        Whether to use a non-linear (sum of squares) or linear version of the
        cooperativity cost. If set to False requires a QP-capable solver.
    max_gcs : None or dict
        The precomputed maximum individual growth rates.

    """
    logger.info("adding L2 norm to %s" % community.id)
    l2 = Zero
    community.variables.community_objective.lb = min_growth
    context = get_context(community)
    if context is not None:
        context(partial(reset_min_community_growth, community))

    for sp in community.taxa:
        taxa_obj = community.constraints["objective_" + sp]
        ex = sum(v for v in taxa_obj.variables if (v.ub - v.lb) > 1e-6)
        l2 += (community.scale * (ex ** 2)).expand()
    community.objective = -l2
    community.modification = "l2 regularization"
    logger.info("finished adding tradeoff objective to %s" % community.id)
コード例 #23
0
ファイル: util.py プロジェクト: Gibbons-Lab/micom
def _apply_min_growth(community, min_growth):
    """Set minimum growth constraints on a model.

    Will integrate with the context.
    """
    context = get_context(community)

    def reset(species, lb):
        logger.info("resetting growth rate constraint for %s" % species)
        community.constraints["objective_" + species].ub = None
        community.constraints["objective_" + species].lb = lb

    for sp in community.species:
        logger.info("setting growth rate constraint for %s" % sp)
        obj = community.constraints["objective_" + sp]
        if context:
            context(partial(reset, sp, obj.lb))
        if min_growth[sp] > 1e-6:
            obj.lb = min_growth[sp]
        else:
            logger.info("minimal growth rate smaller than tolerance,"
                        " setting to zero.")
            obj.lb = 0
コード例 #24
0
def load_model(filepath):
    """Load a cobra model from several file types."""
    logger.info("reading model from {}".format(filepath))
    parsed = urlparse(filepath)
    if parsed.scheme and parsed.netloc:
        tmpdir = tempfile.mkdtemp()
        logger.info("created temporary directory {}".format(tmpdir))
        filepath = download_model(filepath, folder=tmpdir)
        model = _read_model(filepath)
        rmtree(tmpdir)
        logger.info("deleted temporary directory {}".format(tmpdir))
    else:
        model = _read_model(filepath)
    return model
コード例 #25
0
 def reset(taxon, lb):
     logger.info("resetting growth rate constraint for %s" % taxon)
     community.constraints["objective_" + taxon].ub = None
     community.constraints["objective_" + taxon].lb = lb
コード例 #26
0
def minimal_medium(
    community,
    community_growth,
    min_growth=0.0,
    exports=False,
    exchanges=None,
    minimize_components=False,
    open_exchanges=False,
    solution=False,
    weights=None,
    atol=None,
    rtol=None,
):
    """Find the minimal growth medium for the community.

    Finds the minimal growth medium for the community which allows for
    community as well as individual growth. Here, a minimal medium can either
    be the medium requiring the smallest total import flux or the medium
    requiring the least components (ergo ingredients).

    Arguments
    ---------
    community : micom.Community
        The community to modify.
    community_growth : positive float
        The minimum community-wide growth rate.
    min_growth : positive float or array-like object.
        The minimum growth rate for each individual in the community. Either
        a single value applied to all individuals or one value for each.
    exports : boolean
        Whether to include export fluxes in the returned medium. Defaults to
        False which will only return import fluxes.
    exchanges : list of cobra.Reactions
        The list of exchange reactions that are penalized.
    minimize_components : boolean
        Whether to minimize the number of components instead of the total
        import flux. Might be more intuitive if set to True but may also be
        slow to calculate for large communities.
    open_exchanges : boolean or number
        Whether to ignore currently set bounds and make all exchange reactions
        in the model possible. If set to a number all exchange reactions will
        be opened with (-number, number) as bounds.
    solution : boolean
        Whether to also return the entire solution and all fluxes for the
        minimal medium.
    weights : str
        Will scale the fluxes by a weight factor. Can either be "mass" which will
        scale by molecular mass, a single element which will scale by
        the elemental content (for instance "C" to scale by carbon content).
        If None every metabolite will receive the same weight.
        Will be ignored if `minimize_components` is True.
    atol : float
        Absolute tolerance for the growth rates. If None will use the solver tolerance.
    rtol : float
        Relative tolerqance for the growth rates. If None will use the solver tolerance.


    Returns
    -------
    pandas.Series or dict
        A series {rid: flux} giving the import flux for each required import
        reaction. If `solution` is True retuns a dictionary
        {"medium": panas.Series, "solution": micom.CommunitySolution}.

    """
    logger.info("calculating minimal medium for %s" % community.id)

    if atol is None:
        atol = community.solver.configuration.tolerances.optimality
    if rtol is None:
        rtol = community.solver.configuration.tolerances.optimality

    if exchanges is None:
        boundary_rxns = community.exchanges
    else:
        boundary_rxns = community.reactions.get_by_any(exchanges)
    if isinstance(open_exchanges, bool):
        open_bound = 1000
    else:
        open_bound = open_exchanges
    min_growth = _format_min_growth(min_growth, community.taxa)
    with community as com:
        if open_exchanges:
            logger.info("opening exchanges for %d imports" %
                        len(boundary_rxns))
            for rxn in boundary_rxns:
                rxn.bounds = (-open_bound, open_bound)
        logger.info("applying growth rate constraints")
        _apply_min_growth(community, min_growth, atol, rtol)
        com.objective = Zero
        logger.info("adding new media objective")
        if minimize_components:
            add_mip_obj(com, boundary_rxns)
        else:
            scales = weight(boundary_rxns, weights)
            add_linear_obj(com, boundary_rxns, scales)
        sol = com.optimize(fluxes=True, pfba=False)
        if sol is None:
            logger.warning("minimization of medium was unsuccessful")
            return None

        logger.info("formatting medium")
        medium = pd.Series()
        ex = set(com.exchanges) & set(boundary_rxns)
        for rxn in ex:
            export = len(rxn.reactants) == 1
            flux = sol.fluxes.loc["medium", rxn.id]
            if abs(flux) < atol:
                continue
            if export:
                medium[rxn.id] = -flux
            elif not export:
                medium[rxn.id] = flux
        if not exports:
            medium = medium[medium > 0.0]

    if solution:
        return {"medium": medium, "solution": sol}
    else:
        return medium
コード例 #27
0
def add_moma_optcom(community, min_growth, linear=False):
    """Add a dualized MOMA version of OptCom.

    Solves a MOMA (minimization of metabolic adjustment) formulation of OptCom
    given by::

        minimize cooperativity_cost
        s.t. maximize community_objective
             s.t. Sv = 0
                  lb >= v >= ub
        where community_cost = sum (growth_rate - max_growth)**2
              if linear=False or
              community_cost = sum |growth_rate - max_growth|
              if linear=True

    Arguments
    ---------
    community : micom.Community
        The community to modify.
    min_growth : positive float or array-like object.
        The minimum growth rate for each individual in the community. Either
        a single value applied to all individuals or one value for each.
    linear : boolean
        Whether to use a non-linear (sum of squares) or linear version of the
        cooperativity cost. If set to False requires a QP-capable solver.

    """
    logger.info("adding dual %s moma to %s" %
                ("linear" if linear else "quadratic", community.id))
    check_modification(community)
    min_growth = _format_min_growth(min_growth, community.taxa)

    prob = community.solver.interface
    old_obj = community.objective
    coefs = old_obj.get_linear_coefficients(old_obj.variables)

    # Get maximum individual growth rates
    max_gcs = community.optimize_all(progress=False)

    _apply_min_growth(community, min_growth)
    dual_coefs = fast_dual(community)
    coefs.update({v: -coef for v, coef in dual_coefs.items()})
    obj_constraint = prob.Constraint(Zero,
                                     lb=0,
                                     ub=0,
                                     name="optcom_suboptimality")
    community.add_cons_vars([obj_constraint])
    community.solver.update()
    obj_constraint.set_linear_coefficients(coefs)
    obj_expr = Zero
    logger.info("adding expressions for %d taxa" % len(community.taxa))
    for sp in community.taxa:
        v = prob.Variable("gc_constant_" + sp, lb=max_gcs[sp], ub=max_gcs[sp])
        community.add_cons_vars([v])
        taxa_obj = community.constraints["objective_" + sp]
        ex = v - taxa_obj.expression
        if not linear:
            ex = ex**2
        obj_expr += ex.expand()
    community.objective = prob.Objective(obj_expr, direction="min")
    community.modification = "moma optcom"
    logger.info("finished dual moma to %s" % community.id)
コード例 #28
0
def add_dualized_optcom(community, min_growth):
    """Add dual Optcom variables and constraints to a community.

    Uses the original formulation of OptCom and solves the following
    multi-objective problem::

        maximize community_growth
        s.t. maximize growth_rate_i for all i
             s.t. Sv_i = 0
                  lb_i >= v_i >= ub_i

    Notes
    -----
    This method will only find one arbitrary solution from the Pareto front.
    There may exist several other optimal solutions.

    Arguments
    ---------
    community : micom.Community
        The community to modify.
    min_growth : positive float or array-like object.
        The minimum growth rate for each individual in the community. Either
        a single value applied to all individuals or one value for each.

    """
    logger.info("adding dual optcom to %s" % community.id)
    check_modification(community)
    min_growth = _format_min_growth(min_growth, community.taxa)

    prob = community.solver.interface

    # Temporarily subtitute objective with sum of individual objectives
    # for correct dual variables
    old_obj = community.objective
    community.objective = Zero
    for sp in community.taxa:
        taxa_obj = community.constraints["objective_" + sp]
        community.objective += taxa_obj.expression

    _apply_min_growth(community, min_growth)
    dual_coefs = fast_dual(community)

    logger.info("adding expressions for %d taxa" % len(community.taxa))
    for sp in community.taxa:
        primal_const = community.constraints["objective_" + sp]
        coefs = primal_const.get_linear_coefficients(primal_const.variables)
        coefs.update({
            dual_var: -coef
            for dual_var, coef in dual_coefs.items() if sp in dual_var.name
        })
        obj_constraint = prob.Constraint(Zero,
                                         lb=0,
                                         ub=0,
                                         name="optcom_suboptimality_" + sp)
        community.add_cons_vars([obj_constraint])
        community.solver.update()
        obj_constraint.set_linear_coefficients(coefs)

    community.objective = old_obj
    community.modification = "dual optcom"
    logger.info("finished adding dual optcom to %s" % community.id)
コード例 #29
0
def fast_dual(model, prefix="dual_"):
    """Add dual formulation to the problem.

    A mathematical optimization problem can be viewed as a primal and a dual
    problem. If the primal problem is a minimization problem the dual is a
    maximization problem, and the optimal value of the dual is a lower bound of
    the optimal value of the primal. For linear problems, strong duality holds,
    which means that the optimal values of the primal and dual are equal
    (duality gap = 0). This functions takes an optlang Model representing a
    primal linear problem
    and returns a new Model representing the dual optimization problem. The
    provided model must have a linear objective, linear constraints and only
    continuous variables. Furthermore, the problem must be in standard form,
    i.e. all variables should be non-negative. Both minimization and
    maximization problems are allowed.

    Attributes
    ----------
    model : cobra.Model
        The model to be dualized.
    prefix : str
        The string that will be prepended to all variable and constraint names
        in the returned dual problem.

    Returns
    -------
    dict
        The coefficients for the new dual objective.

    """
    logger.info("adding dual variables")
    if len(model.variables) > 1e5:
        logger.warning("the model has a lot of variables,"
                       "dual optimization will be extremely slow :O")
    prob = model.problem

    maximization = model.objective.direction == "max"

    if maximization:
        sign = 1
    else:
        sign = -1

    coefficients = {}
    dual_objective = {}
    to_add = []

    # Add dual variables from primal constraints:
    for constraint in model.constraints:
        if constraint.expression == 0:
            continue  # Skip empty constraint
        if not constraint.is_Linear:
            raise ValueError("Non-linear problems are not supported: " +
                             str(constraint))
        if constraint.lb is None and constraint.ub is None:
            logger.warning("skipped free constraint %s" % constraint.name)
            continue  # Skip free constraint
        if constraint.lb == constraint.ub:
            const_var = prob.Variable(prefix + constraint.name + "_constraint",
                                      lb=None,
                                      ub=None)
            to_add.append(const_var)
            if constraint.lb != 0:
                dual_objective[const_var.name] = sign * constraint.lb
            coefs = constraint.get_linear_coefficients(constraint.variables)
            for variable, coef in coefs.items():
                coefficients.setdefault(variable.name,
                                        {})[const_var.name] = (sign * coef)
        else:
            if constraint.lb is not None:
                lb_var = prob.Variable(prefix + constraint.name +
                                       "_constraint_lb",
                                       lb=0,
                                       ub=None)
                to_add.append(lb_var)
                if constraint.lb != 0:
                    dual_objective[lb_var.name] = -sign * constraint.lb
            if constraint.ub is not None:
                ub_var = prob.Variable(prefix + constraint.name +
                                       "_constraint_ub",
                                       lb=0,
                                       ub=None)
                to_add.append(ub_var)
                if constraint.ub != 0:
                    dual_objective[ub_var.name] = sign * constraint.ub

            if not (constraint.expression.is_Add
                    or constraint.expression.is_Mul):
                raise ValueError("Invalid expression type: " +
                                 str(type(constraint.expression)))
            if constraint.expression.is_Add:
                coefficients_dict = constraint.get_linear_coefficients(
                    constraint.variables)
            else:  # constraint.expression.is_Mul:
                args = constraint.expression.args
                coefficients_dict = {args[1]: args[0]}

            for variable, coef in coefficients_dict.items():
                if constraint.lb is not None:
                    coefficients.setdefault(variable.name,
                                            {})[lb_var.name] = (-sign * coef)
                if constraint.ub is not None:
                    coefficients.setdefault(variable.name,
                                            {})[ub_var.name] = (sign * coef)

    # Add dual variables from primal bounds
    for variable in model.variables:
        if not variable.type == "continuous":
            raise ValueError("Integer variables are not supported: " +
                             str(variable))
        if variable.lb is not None and variable.lb < 0:
            raise ValueError("Problem is not in standard form (" +
                             variable.name + " can be negative)")
        if variable.lb > 0:
            bound_var = prob.Variable(prefix + variable.name + "_lb",
                                      lb=0,
                                      ub=None)
            to_add.append(bound_var)
            coefficients.setdefault(variable.name, {})[bound_var.name] = -sign
            dual_objective[bound_var.name] = -sign * variable.lb
        if variable.ub is not None:
            bound_var = prob.Variable(prefix + variable.name + "_ub",
                                      lb=0,
                                      ub=None)
            to_add.append(bound_var)
            coefficients.setdefault(variable.name, {})[bound_var.name] = sign
            if variable.ub != 0:
                dual_objective[bound_var.name] = sign * variable.ub

    model.add_cons_vars(to_add)

    # Add dual constraints from primal objective
    primal_objective_dict = model.objective.get_linear_coefficients(
        model.objective.variables)
    for variable in model.objective.variables:
        obj_coef = primal_objective_dict[variable]
        if maximization:
            const = prob.Constraint(S.Zero,
                                    lb=obj_coef,
                                    name=prefix + variable.name)
        else:
            const = prob.Constraint(S.Zero,
                                    ub=obj_coef,
                                    name=prefix + variable.name)
        model.add_cons_vars([const])
        model.solver.update()
        coefs = {
            model.variables[vid]: coef
            for vid, coef in coefficients[variable.name].items()
        }
        const.set_linear_coefficients(coefs)

    # Make dual objective
    coefs = {
        model.variables[vid]: coef
        for vid, coef in dual_objective.items() if coef != 0
    }
    logger.info("dual model has {} terms in objective".format(len(coefs)))

    return coefs
コード例 #30
0
ファイル: media.py プロジェクト: Gibbons-Lab/micom
def minimal_medium(
    community,
    community_growth,
    exchanges=None,
    min_growth=0.0,
    exports=False,
    minimize_components=False,
    open_exchanges=False,
    solution=False,
):
    """Find the minimal growth medium for the community.

    Finds the minimal growth medium for the community which allows for
    community as well as individual growth. Here, a minimal medium can either
    be the medium requiring the smallest total import flux or the medium
    requiring the least components (ergo ingredients).

    Arguments
    ---------
    community : micom.Community
        The community to modify.
    community_growth : positive float
        The minimum community-wide growth rate.
    exchanges : list of cobra.Reactions
        The list of exchange reactions that are penalized.
    min_growth : positive float or array-like object.
        The minimum growth rate for each individual in the community. Either
        a single value applied to all individuals or one value for each.
    exports : boolean
        Whether to include export fluxes in the returned medium. Defaults to
        False which will only return import fluxes.
    minimize_components : boolean
        Whether to minimize the number of components instead of the total
        import flux. Might be more intuitive if set to True but may also be
        slow to calculate for large communities.
    open_exchanges : boolean or number
        Whether to ignore currently set bounds and make all exchange reactions
        in the model possible. If set to a number all exchange reactions will
        be opened with (-number, number) as bounds.
    solution : boolean
        Whether to also return the entire solution and all fluxes for the
        minimal medium.


    Returns
    -------
    pandas.Series or dict
        A series {rid: flux} giving the import flux for each required import
        reaction. If `solution` is True retuns a dictionary
        {"medium": panas.Series, "solution": micom.CommunitySolution}.

    """
    logger.info("calculating minimal medium for %s" % community.id)
    boundary_rxns = community.exchanges
    if isinstance(open_exchanges, bool):
        open_bound = 1000
    else:
        open_bound = open_exchanges
    min_growth = _format_min_growth(min_growth, community.species)
    with community as com:
        if open_exchanges:
            logger.info("opening exchanges for %d imports" %
                        len(boundary_rxns))
            for rxn in boundary_rxns:
                rxn.bounds = (-open_bound, open_bound)
        logger.info("applying growth rate constraints")
        context = get_context(community)
        if context is not None:
            context(partial(reset_min_community_growth, com))
            com.variables.community_objective.lb = community_growth
        _apply_min_growth(community, min_growth)
        com.objective = Zero
        logger.info("adding new media objective")
        if minimize_components:
            add_mip_obj(com, boundary_rxns)
        else:
            add_linear_obj(com, boundary_rxns)
        sol = com.optimize(fluxes=True, pfba=False)
        if sol is None:
            logger.warning("minimization of medium was unsuccessful")
            return None

        logger.info("formatting medium")
        medium = pd.Series()
        tol = community.solver.configuration.tolerances.feasibility
        for rxn in boundary_rxns:
            export = len(rxn.reactants) == 1
            flux = sol.fluxes.loc["medium", rxn.id]
            if abs(flux) < tol:
                continue
            if export:
                medium[rxn.id] = -flux
            elif not export:
                medium[rxn.id] = flux
        if not exports:
            medium = medium[medium > 0]

    if solution:
        return {"medium": medium, "solution": sol}
    else:
        return medium