コード例 #1
0
ファイル: troposphere_radio.py プロジェクト: yxw027/where
def saastamoinen_zenith_wet_delay(latitude, height, temperature, e):
    r"""Calculates zenith wet delay based Saastamoinen model

    The total tropospheric delay for a given zenith distance :math:`z` is determined after Equation (19a) in
    Saastamoinen :cite:`saastamoinen1972`:

    .. math::
       \Delta T = 0.002277 \cdot \sec z \cdot (p + (1255/T + 0.05) \cdot e) - 1.16 \cdot \tan^2 z

    The zenith tropospheric delay is determined with :math:`z = 0`:

    .. math::
       \Delta T^z = \Delta T_h^z + \Delta T_w^z = zhd + zwd

    with the zenith hydrostatic delay :math:`zhd = 0.002277 \cdot p` and zenith wet delay
    :math:`zwd = 0.002277 \cdot (1255/T + 0.05) \cdot e`.

    Args:
        latitude (numpy.ndarray):     Geodetic latitude for each observation in [rad]
        height (numpy.ndarray):       Orthometric height for each observation in [m]
        temperature (numpy.ndarray):  Temperature for each observation in [Celsius]
        e (numpy.ndarray):            Water vapor pressure for each observation in [hPa]

    Returns:
        numpy.ndarray:     Zenith wet delay for each observation in [m]
    """
    # Zenith wet delay based on Eq. (19a) in Saastamoinen :cite:`saastamoinen1972`
    return 0.002_276_8 * (1255 / Unit.celsius_to_kelvin(temperature) +
                          0.05) * e
コード例 #2
0
ファイル: troposphere_radio.py プロジェクト: yxw027/where
def davis_zenith_wet_delay(latitude, height, temperature, e):
    r"""Calculates zenith wet delay based on Saastamoinen/Davis model

    The total tropospheric delay for a given zenith distance :math:`z` is determined after Equation (19a) in
    Saastamoinen :cite:`saastamoinen1972`:

    .. math::
       \Delta T = 0.002277 \cdot \sec z \cdot (p + (1255/T + 0.05) \cdot e) - 1.16 \cdot \tan^2 z

    The zenith tropospheric delay is determined with :math:`z = 0`:

    .. math::
       \Delta T^z = \Delta T_h^z + \Delta T_w^z = zhd + zwd

    with the zenith hydrostatic delay :math:`zhd = 0.002277 \cdot p` and zenith wet delay :math:`zwd = 0.002277 \cdot
    (1255/T + 0.05) \cdot e`.

    A Fortran routine written by Davis corrects also for the gravity effect due to height :math:`H` and latitude
    :math:`\phi` (see http://acc.igs.org/tropo/wetsaas.f) and uses the constant :math:`0.0022768` instead of
    :math:`0.002277`, which leads to

    .. math::
       zwd = 0.0022768 \cdot (1255/T + 0.05) \cdot e / (1 - 0.00266 \cos 2 \phi - 0.00000028 H) .

    The difference between the orthometric height and geodetic height is called geoid undulation and can reach up to
    100 m due to Boehm et al. :cite:`boehm2007`. The influence of height difference is not significant in this
    equation.  The geodetic (ellipsoidal) height is therefore often used instead of the orthometric height.

    Args:
        latitude (numpy.ndarray):     Geodetic latitude for each observation in [rad]
        height (numpy.ndarray):       Orthometric height for each observation in [m]
        temperature (numpy.ndarray):  Temperature for each observation in [Celsius]
        e (numpy.ndarray):            Water vapor pressure for each observation in [hPa]

    Returns:
        numpy.ndarray:    Zenith wet delay for each observation in [m]
    """
    gravity_corr = saastamoinen_gravity_correction(latitude, height)

    # Zenith wet delay based on Eq. (19a) in Saastamoinen :cite:`saastamoinen1972` with additional gravity
    # correction
    zwd = 0.002_276_8 * (1255 / Unit.celsius_to_kelvin(temperature) +
                         0.05) * e / gravity_corr

    return zwd