コード例 #1
0
def correct_lors(lors,
                 fov_center,
                 fov_size,
                 lyso_center0,
                 lyso_size0,
                 lyso_center1,
                 lyso_size1,
                 weights=None,
                 atten_coef=0.0096,
                 lyso_atten_coef=0.087,
                 system_shape=miil.default_system_shape,
                 correct_lyso_atten=True,
                 correct_uniform_atten=True,
                 packing_frac=default_packing_frac):
    vec = miil.create_sparse_column_vector(lors)
    if correct_uniform_atten or correct_lyso_atten:
        line_start, line_end = miil.get_lor_positions(vec.indices,
                                                      system_shape)
        if correct_uniform_atten:
            fov_length = voxel_intersection_length(line_start, line_end,
                                                   fov_center, fov_size)
            vec.data *= np.squeeze(np.exp(atten_coef * fov_length))
        if correct_lyso_atten:
            vec.data *= lyso_atten_weight(lors, lyso_center0, lyso_size0,
                                          lyso_center1, lyso_size1,
                                          lyso_atten_coef, packing_frac)
    if weights is not None:
        crystal0, crystal1 = miil.lor_to_crystals(vec.indices,
                                                  miil.default_system_shape)
        vec.data *= weights[crystal0]
        vec.data *= weights[crystal1]
    return vec
コード例 #2
0
ファイル: test_recon.py プロジェクト: dfreese/pymiil
    def test_back_project_multiple_subsets(self):
        image_shape = (324, 128, 68)
        voxel_size_mm = 0.5
        sigma = voxel_size_mm
        model = miil.recon.BreastPETSystemMatrix(image_shape,
                                                 voxel_size_mm=voxel_size_mm,
                                                 sigma=sigma,
                                                 tor_width=1)
        lors = np.array(2 * (855655487, ),
                        dtype=np.int64)  # LOR straight across FOV

        x_mm = voxel_size_mm * (np.arange(0, image_shape[0]) -
                                image_shape[0] / 2 + 0.5)
        z_mm = voxel_size_mm * (np.arange(0, image_shape[2]) -
                                image_shape[2] / 2 + 0.5)

        pos0, pos1 = miil.get_lor_positions(lors)
        ref = np.ones(image_shape, dtype=np.float32)
        d2 = ((pos0[0,0] - x_mm[:, None, None]) / voxel_size_mm) ** 2 + \
             ((pos0[0,2] - z_mm[None, None, :]) / voxel_size_mm) ** 2
        d2_exp = np.exp(-d2 * sigma)
        d2_exp[d2 > 1.0] = 0
        ref *= d2_exp
        # Double the reference for the two of the same lors
        ref *= 2

        # split the two lors into two subsets.
        val = model.back_project(lors, subset_size=1)
        assert (((val == 0) == (ref == 0)).all())
        assert ((np.abs(val - ref) < 1e-5).all())
コード例 #3
0
ファイル: test_recon.py プロジェクト: dfreese/pymiil
    def test_back_project_with_slor_weights(self):
        image_shape = (324, 128, 68)
        voxel_size_mm = 0.5
        sigma = voxel_size_mm
        model = miil.recon.BreastPETSystemMatrix(image_shape,
                                                 voxel_size_mm=voxel_size_mm,
                                                 sigma=sigma,
                                                 tor_width=1)
        weight_val = 2.0
        slor_weights = weight_val * np.ones(miil.no_slors())
        lors = np.array((855655487, ),
                        dtype=np.int64)  # LOR straight across FOV
        val = model._back_project(lors, slor_weights=slor_weights)

        x_mm = voxel_size_mm * (np.arange(0, image_shape[0]) -
                                image_shape[0] / 2 + 0.5)
        z_mm = voxel_size_mm * (np.arange(0, image_shape[2]) -
                                image_shape[2] / 2 + 0.5)

        pos0, pos1 = miil.get_lor_positions(lors)
        ref = np.ones(image_shape, dtype=np.float32)
        d2 = ((pos0[0,0] - x_mm[:, None, None]) / voxel_size_mm) ** 2 + \
             ((pos0[0,2] - z_mm[None, None, :]) / voxel_size_mm) ** 2
        d2_exp = np.exp(-d2 * sigma)
        d2_exp[d2 > 1.0] = 0
        ref *= d2_exp
        ref *= weight_val
        assert (((val == 0) == (ref == 0)).all())
        assert ((np.abs(val - ref) < 1e-5).all())

        val = model.back_project(lors, slor_weights=slor_weights)
        assert (((val == 0) == (ref == 0)).all())
        assert ((np.abs(val - ref) < 1e-5).all())
コード例 #4
0
def lyso_length(lors,
                lyso_center0=default_panel0_lyso_center,
                lyso_size0=default_lyso_size,
                lyso_center1=default_panel1_lyso_center,
                lyso_size1=default_lyso_size,
                system_shape=miil.default_system_shape):
    line_start, line_end = miil.get_lor_positions(lors, system_shape)

    length = \
        voxel_intersection_length(
            line_start, line_end, lyso_center0, lyso_size0) + \
        voxel_intersection_length(
            line_start, line_end, lyso_center1, lyso_size1)
    return length
コード例 #5
0
def uniform_phantom_nonuniform_illum_weight(
        lors,
        fov_center=default_fov_center,
        fov_size=default_fov_size,
        ref_length=None,
        system_shape=miil.default_system_shape):
    # If the refence length is not specified, then assume the width of the FOV
    # in Y.
    if ref_length is None:
        ref_length = fov_size[1]

    line_start, line_end = miil.get_lor_positions(lors, system_shape)

    fov_length = voxel_intersection_length(line_start, line_end, fov_center,
                                           fov_size)

    weight = fov_length / ref_length
    return weight
コード例 #6
0
def correct_uniform_phantom_lors(lors,
                                 fov_center,
                                 fov_size,
                                 lyso_center0,
                                 lyso_size0,
                                 lyso_center1,
                                 lyso_size1,
                                 atten_coef=0.0096,
                                 lyso_atten_coef=0.087,
                                 system_shape=miil.default_system_shape,
                                 packing_frac=default_packing_frac):
    vec = miil.create_sparse_column_vector(lors)
    line_start, line_end = miil.get_lor_positions(vec.indices, system_shape)

    fov_length = voxel_intersection_length(line_start, line_end, fov_center,
                                           fov_size)
    vec.data *= np.squeeze(np.exp(atten_coef * fov_length) / fov_length)

    vec.data *= lyso_atten_weight(lors, lyso_center0, lyso_size0, lyso_center1,
                                  lyso_size1, lyso_atten_coef, packing_frac)

    return vec