def main(): milvus = Milvus() # Connect to Milvus server # You may need to change _HOST and _PORT accordingly param = {'host': _HOST, 'port': _PORT} status = milvus.connect(**param) if status.OK(): print("Server connected.") else: print("Server connect fail.") sys.exit(1) # Create collection demo_collection if it dosen't exist. collection_name = 'example_collection' status, ok = milvus.has_collection(collection_name) if not ok: param = { 'collection_name': collection_name, 'dimension': _DIM, 'index_file_size': _INDEX_FILE_SIZE, # optional 'metric_type': MetricType.L2 # optional } milvus.create_collection(param) # Show collections in Milvus server _, collections = milvus.show_collections() # present collection info _, info = milvus.collection_info(collection_name) print(info) # Describe demo_collection _, collection = milvus.describe_collection(collection_name) print(collection) # 10000 vectors with 16 dimension # element per dimension is float32 type # vectors should be a 2-D array vectors = [[random.random() for _ in range(_DIM)] for _ in range(10000)] # You can also use numpy to generate random vectors: # `vectors = np.random.rand(10000, 16).astype(np.float32)` # Insert vectors into demo_collection, return status and vectors id list status, ids = milvus.insert(collection_name=collection_name, records=vectors) # Flush collection inserted data to disk. milvus.flush([collection_name]) # Get demo_collection row count status, result = milvus.count_collection(collection_name) # create index of vectors, search more rapidly index_param = { 'nlist': 2048 } # Create ivflat index in demo_collection # You can search vectors without creating index. however, Creating index help to # search faster print("Creating index: {}".format(index_param)) status = milvus.create_index(collection_name, IndexType.IVF_FLAT, index_param) # describe index, get information of index status, index = milvus.describe_index(collection_name) print(index) # Use the top 10 vectors for similarity search query_vectors = vectors[0:10] # execute vector similarity search search_param = { "nprobe": 16 } param = { 'collection_name': collection_name, 'query_records': query_vectors, 'top_k': 1, 'params': search_param } print("Searching ... ") status, results = milvus.search(**param) if status.OK(): # indicate search result # also use by: # `results.distance_array[0][0] == 0.0 or results.id_array[0][0] == ids[0]` if results[0][0].distance == 0.0 or results[0][0].id == ids[0]: print('Query result is correct') else: print('Query result isn\'t correct') # print results print(results) # Delete demo_collection status = milvus.drop_collection(collection_name) # Disconnect from Milvus status = milvus.disconnect()
'dimension': _DIM, 'index_file_size': 10, # optional 'metric_type': MetricType.L2 # optional } client.create_collection(param) # randomly generate 100000 vectors and insert collection vectors = [[random.random() for _ in range(_DIM)] for _ in range(10000)] client.insert(collection_name, vectors) # flush data to disk client.flush([collection_name]) # query collection's statistical information. status, info = client.collection_info(collection_name) if not status.OK(): print("Query collection statistical information fail. exiting ....") sys.exit(1) # show collection information print("Total amount of vectors in collection {} is {}".format( collection_name, info.count)) for par in info.partitions_stat: print("\tpartition tag: {}, vector count: {}".format( par.tag, par.count)) # show segment information for seg in par.segments_stat: print( "\t\tsegment name: {}, vector count: {}, index: {}, storage size {:.3f} MB" .format(seg.segment_name, seg.count, seg.index_name,