def extract_cases(self, collection): collection_name = collection[ "collection_name"] if "collection_name" in collection else None (data_type, dimension, metric_type) = parser.parse_ann_collection_name(collection_name) # hdf5_source_file: The path of the source data file saved on the NAS hdf5_source_file = collection["source_file"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] guarantee_timestamp = collection[ "guarantee_timestamp"] if "guarantee_timestamp" in collection else None search_params = collection["search_params"] vector_type = utils.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) dataset = utils.get_dataset(hdf5_source_file) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } filters = collection["filters"] if "filters" in collection else [] filter_query = [] # Convert list data into a set of dictionary data search_params = utils.generate_combinations(search_params) index_params = utils.generate_combinations(index_params) cases = list() case_metrics = list() self.init_metric(self.name, collection_info, {}, search_info=None) # true_ids: The data set used to verify the results returned by query true_ids = np.array(dataset["neighbors"]) for index_type in index_types: for index_param in index_params: index_info = { "index_type": index_type, "index_param": index_param } for search_param in search_params: if not filters: filters.append(None) for filter in filters: filter_param = [] if isinstance(filter, dict) and "range" in filter: filter_query.append(eval(filter["range"])) filter_param.append(filter["range"]) if isinstance(filter, dict) and "term" in filter: filter_query.append(eval(filter["term"])) filter_param.append(filter["term"]) for nq in nqs: query_vectors = utils.normalize( metric_type, np.array(dataset["test"][:nq])) for top_k in top_ks: search_info = { "topk": top_k, "query": query_vectors, "metric_type": utils.metric_type_trans(metric_type), "params": search_param } # TODO: only update search_info case_metric = copy.deepcopy(self.metric) # set metric type as case case_metric.set_case_metric_type() case_metric.index = index_info case_metric.search = { "nq": nq, "topk": top_k, "search_param": search_param, "filter": filter_param, "guarantee_timestamp": guarantee_timestamp } vector_query = { "vector": { index_field_name: search_info } } case = { "collection_name": collection_name, "dataset": dataset, "index_field_name": index_field_name, "dimension": dimension, "data_type": data_type, "metric_type": metric_type, "vector_type": vector_type, "index_type": index_type, "index_param": index_param, "filter_query": filter_query, "vector_query": vector_query, "true_ids": true_ids, "guarantee_timestamp": guarantee_timestamp } # Obtain the parameters of the use case to be tested cases.append(case) case_metrics.append(case_metric) return cases, case_metrics
def extract_cases(self, collection): collection_name = collection[ "collection_name"] if "collection_name" in collection else None (data_type, collection_size, dimension, metric_type) = parser.collection_parser(collection_name) vector_type = utils.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) base_query_vectors = utils.get_vectors_from_binary( utils.MAX_NQ, dimension, data_type) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name, "collection_size": collection_size } index_info = self.milvus.describe_index(index_field_name, collection_name) filters = collection["filters"] if "filters" in collection else [] filter_query = [] top_ks = collection["top_ks"] nqs = collection["nqs"] guarantee_timestamp = collection[ "guarantee_timestamp"] if "guarantee_timestamp" in collection else None search_params = collection["search_params"] search_params = utils.generate_combinations(search_params) cases = list() case_metrics = list() self.init_metric(self.name, collection_info, index_info, search_info=None) for search_param in search_params: if not filters: filters.append(None) for filter in filters: filter_param = [] if isinstance(filter, dict) and "range" in filter: filter_query.append(eval(filter["range"])) filter_param.append(filter["range"]) if isinstance(filter, dict) and "term" in filter: filter_query.append(eval(filter["term"])) filter_param.append(filter["term"]) for nq in nqs: query_vectors = base_query_vectors[0:nq] for top_k in top_ks: search_info = { "topk": top_k, "query": query_vectors, "metric_type": utils.metric_type_trans(metric_type), "params": search_param } # TODO: only update search_info case_metric = copy.deepcopy(self.metric) # set metric type as case case_metric.set_case_metric_type() case_metric.search = { "nq": nq, "topk": top_k, "search_param": search_param, "filter": filter_param, "guarantee_timestamp": guarantee_timestamp } vector_query = { "vector": { index_field_name: search_info } } case = { "collection_name": collection_name, "index_field_name": index_field_name, "dimension": dimension, "data_type": data_type, "metric_type": metric_type, "vector_type": vector_type, "collection_size": collection_size, "filter_query": filter_query, "vector_query": vector_query, "guarantee_timestamp": guarantee_timestamp } cases.append(case) case_metrics.append(case_metric) return cases, case_metrics
def extract_cases(self, collection): collection_name = collection[ "collection_name"] if "collection_name" in collection else None (data_type, dimension, metric_type) = parser.parse_ann_collection_name(collection_name) hdf5_source_file = collection["source_file"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] vector_type = utils.get_vector_type(data_type) index_field_name = utils.get_default_field_name(vector_type) dataset = utils.get_dataset(hdf5_source_file) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } filters = collection["filters"] if "filters" in collection else [] filter_query = [] search_params = utils.generate_combinations(search_params) index_params = utils.generate_combinations(index_params) cases = list() case_metrics = list() self.init_metric(self.name, collection_info, {}, search_info=None) true_ids = np.array(dataset["neighbors"]) for index_type in index_types: for index_param in index_params: index_info = { "index_type": index_type, "index_param": index_param } for search_param in search_params: if not filters: filters.append(None) for filter in filters: filter_param = [] if isinstance(filter, dict) and "range" in filter: filter_query.append(eval(filter["range"])) filter_param.append(filter["range"]) if isinstance(filter, dict) and "term" in filter: filter_query.append(eval(filter["term"])) filter_param.append(filter["term"]) for nq in nqs: query_vectors = utils.normalize( metric_type, np.array(dataset["test"][:nq])) for top_k in top_ks: search_info = { "topk": top_k, "query": query_vectors, "metric_type": utils.metric_type_trans(metric_type), "params": search_param } # TODO: only update search_info case_metric = copy.deepcopy(self.metric) case_metric.index = index_info case_metric.search = { "nq": nq, "topk": top_k, "search_param": search_param, "filter": filter_param } vector_query = { "vector": { index_field_name: search_info } } case = { "collection_name": collection_name, "dataset": dataset, "index_field_name": index_field_name, "dimension": dimension, "data_type": data_type, "metric_type": metric_type, "vector_type": vector_type, "index_type": index_type, "index_param": index_param, "filter_query": filter_query, "vector_query": vector_query, "true_ids": true_ids } cases.append(case) case_metrics.append(case_metric) return cases, case_metrics