print('#' * 5 + '地址' + '#' * 5) address = Address('zh') print(address.coordinates()) print(address.city()) print('\n') print('#' * 5 + '地址' + '#' * 5) business = Business('zh') print(business.company()) print(business.company_type()) print('\n') print('#' * 5 + '支付' + '#' * 5) payment = Payment('zh') print(payment.paypal()) print(payment.credit_card_expiration_date()) print('\n') print('#' * 5 + '文字' + '#' * 5) text = Text('zh') print(text.alphabet()) print(text.answer()) print(text.quote()) print(text.title()) print(text.word()) print(text.words()) print(text.sentence()) print('\n') print('#' * 5 + '食物' + '#' * 5) food = Food('zh')
################################################## ################################################## ### Generate a DataFrame of user information ################################################## # Generate 10,000 rows of the following: # user_id, first_name, last_name, email, password, address, # birth_date, credit_card_num, credit_card_exp, security_answer, # account_balance user_df = pd.DataFrame([[x, person.name(), person.surname(), person.gender(), person.email(), hashed_passwd(person.password()), address.address(), person.age(), payment.credit_card_number(), payment.credit_card_expiration_date(), text.word(), account_balance(), np.random.randint(1, 11)] for x in range(10000)]) user_df.columns = ["user_id", "first_name", "last_name", "gender", "email", "password_hashed", "address", "age", "credit_card_num", "credit_card_exp", "security_answer", "account_balance", "marketing_level"] # Generate sales, based on a noisy linear model user_df['sales'] = generate_sales(user_df) user_df['sales'] = user_df['sales'] - user_df['sales'].min() user_df['sales'] /= 40 print("Summary statistics on numerical data:")