コード例 #1
0
def fill_persondata():
    db = MySQLdb.connect(host=config.DB_HOST,
                         user=config.DB_USER,
                         passwd=config.DB_PASSWORD,
                         db=config.DB_NAME)
    cursor = db.cursor()

    # Zero client, anon
    cursor.execute(
        """INSERT INTO PersonData (first_name, last_name, birth_date, email, mobile, gender) VALUES (%s, %s, %s, %s,
            %s, %s);""", [
            'anon', 'anon',
            Datetime().date(start=1950, end=2001), None, None, None
        ])
    for _ in range(config.N_PERSONS):
        p = Person('ru')
        cursor.execute(
            """INSERT INTO PersonData (first_name, last_name, birth_date, email, mobile, gender) VALUES (%s, %s, %s,
                %s, %s, %s);""", [
                p.name(),
                p.surname(),
                Datetime().date(start=1950, end=2001),
                p.email(),
                p.telephone('#' * 11),
                'M' if p.gender(iso5218=True) == 1 else 'F'
            ])

    db.commit()
    cursor.close()
    db.close()
コード例 #2
0
def generatorGender():
    person = Person('ru')
    gend = person.gender()
    if gend == 'Муж.':
        return 'M'
    else:
        return 'F'
コード例 #3
0
def create_personalData():  # function of generate new client data
    passport = ''
    person = Person('ru')

    # Выводим исландские мужские имена.

    lastname = person.last_name()
    personalData['lastname'] = lastname
    # print('\nфамилия:\t', personalData['lastname'])

    name = person.name()
    personalData['name'] = name
    # print('имя:\t\t', personalData['name'])

    surname = person.surname()
    personalData['surname'] = surname
    # print('отчество:\t', personalData['surname'])

    gender = person.gender()
    personalData['gender'] = gender
    # print('пол:\t\t', personalData['gender'])

    for _ in range(2):
        varLet = random.choice(string.ascii_uppercase)
        passport += varLet
    passport += person.telephone('#######')
    personalData['passport'] = passport
    # print('паспорт:\t', personalData['passport'])

    ### birthday
    currentDate()
    personalData['age'] = age
    personalData['age'][2] = str(
        int(personalData['age'][2]) - person.age(16, 70))
    # print('возраст:\t', personalData['age'], '\n')
    ###

    # print('гражд-во:\t', person.get_current_locale())
    # print('Нац-сть:\t',person.nationality())

    ### mobile
    mobile = person.telephone('+37529#######')
    personalData['mobile'] = mobile
    # print('телефон:\t', personalData['mobile'])
    ###
    ### email
    # personalData['email'] = person.email()
    # print('email:\t\t', personalData['email'])
    ###
    # print('проф-ия:\t', person.occupation(), '\n')
    # print('обращение:\t', person.title())
    # print('взгляды:\t', person.views_on())
    # print('вера:\t\t', person.worldview(), '\n')
    return personalData
コード例 #4
0
ファイル: create_persons.py プロジェクト: Highoc/sec_project
def create_person():
    from mimesis import Person as MimesisPerson, locales, Address

    person = MimesisPerson(locales.RU)
    address = Address(locales.RU)

    with transaction.atomic():
        first_name = person.name()
        last_name = person.surname()

        gender = person.gender()
        if gender == 'Муж.':
            patronymic = choice([
                'Сергеевич', 'Николаевич', 'Артурович', 'Константинович',
                'Игоревич'
            ])
        else:
            patronymic = choice([
                'Александровна', 'Борисовна', 'Петровна', 'Юрьевна',
                'Анатольевна'
            ])

        birth_date = generate_birthdate()
        address = '{}, {}'.format(address.federal_subject(), address.address())

        passport_series = randint(1000, 7000)
        passport_number = randint(100000, 999999)

        pair = generate_RSA_pair()

        signature_public_key = pair[1]
        load_key_to_file(
            '../../../person_signature_private_keys/{}_{}_{}_{}.pem'.format(
                passport_series, passport_number, last_name, first_name),
            pair[0])

        person_info = '{} {} {} {} {} {} {} {}'.format(
            first_name, last_name, patronymic, birth_date, address,
            passport_series, passport_number, signature_public_key)

        signature_i = sign_person_info(person_info)

        Person(first_name=first_name,
               last_name=last_name,
               patronymic=patronymic,
               birth_date=birth_date,
               address=address,
               passport_series=passport_series,
               passport_number=passport_number,
               signature_public_key=signature_public_key,
               signature_i=signature_i).save()
コード例 #5
0
ファイル: __init__.py プロジェクト: fmind/grader
def generate_student() -> dict:
    """Generate a student record."""
    person = Person()

    student = {
        "academic_degree": person.academic_degree(),
        "age": person.age(),
        "full_name": person.full_name(),
        "gender": person.gender(),
        "nationality": person.nationality(),
        "university": person.university(),
    }

    return student
コード例 #6
0
    def person(
        cls,
        *,
        locale=Locales.EN,
        qualification=None,
        age=None,
        blood_type=None,
        email=None,
        first_name=None,
        last_name=None,
        gender=None,
        height=None,
        id=None,
        language=None,
        nationality=None,
        occupation=None,
        phone=None,
        title=None,
        university=None,
        weight=None,
        work_experience=None,
    ):
        '''
            Create an Person Data Entity object.

            All individual fields are automatically randomly generated based on locale. If provided, the corresponding values are overriden.

            Note:
                All individual fields are randomly generated. Don't expect correct correlation e.g. correct postal code for the generated city.

            Keyword Arguments:
                locale: Approprite Random.locale.<local_name> object. Default is Random.locale.EN
                qualification: Educational Qualification
                age: Age
                blood_type: Blood type
                email: Email address
                first_name: First name
                last_name: Last name
                gender: Gender
                height: Height
                id: Identifier
                language: Language
                nationality: Nationality
                occupation: Occupation
                phone: Phone number
                title: Title
                university: University
                weight: Weight
                work_experience: Work Experience
        '''
        person = Person(locale=locale)
        from arjuna.engine.data.entity.person import Person as ArjPerson

        first_name = first_name is not None and first_name or person.first_name(
        )
        last_name = last_name is not None and last_name or person.last_name()
        return ArjPerson(
            qualification=qualification is not None and qualification
            or person.academic_degree(),
            age=age is not None and age or person.age(),
            blood_type=blood_type is not None and blood_type
            or person.blood_type(),
            email=email is not None and email or person.email(),
            first_name=first_name,
            last_name=last_name,
            name=first_name + " " + last_name,
            gender=gender is not None and gender or person.gender(),
            height=height is not None and height or person.height(),
            id=id is not None and id or person.identifier(),
            language=language is not None and language or person.language(),
            nationality=nationality is not None and nationality
            or person.nationality(),
            occupation=occupation is not None and occupation
            or person.occupation(),
            phone=phone is not None and phone or person.telephone(),
            title=title is not None and title or person.title(),
            university=university is not None and university
            or person.university(),
            weight=weight is not None and weight or person.weight(),
            work_experience=work_experience is not None and work_experience
            or person.work_experience(),
        )
コード例 #7
0
    noise = noise_ampl*np.random.normal(0.01, 1.7, df.shape[0])
    gated_age = np.heaviside(df[age] - min_age, 0.5) - np.heaviside(df[age] - max_age, 0.5)
    return 0.01*pow(np.abs(df[age] - 30), 2.5) + df[age] + 50*df[marketing_level]*gated_age + 2*df[account_balance] + noise


##################################################

##################################################
### Generate a DataFrame of user information
##################################################
# Generate 10,000 rows of the following:
# user_id, first_name, last_name, email, password, address,
# birth_date, credit_card_num, credit_card_exp, security_answer,
# account_balance

user_df = pd.DataFrame([[x, person.name(), person.surname(), person.gender(),
                        person.email(), hashed_passwd(person.password()),
                        address.address(), person.age(),
                        payment.credit_card_number(),
                        payment.credit_card_expiration_date(), text.word(),
                        account_balance(), np.random.randint(1, 11)]
                        for x in range(10000)])

user_df.columns = ["user_id", "first_name", "last_name",
                   "gender", "email", "password_hashed", "address",
                   "age", "credit_card_num", "credit_card_exp",
                   "security_answer", "account_balance",
                   "marketing_level"]

# Generate sales, based on a noisy linear model
user_df['sales'] = generate_sales(user_df)
コード例 #8
0
##################################################

##################################################
### Generate a DataFrame of user information
##################################################
# Generate 10,000 rows of the following:
# user_id, first_name, last_name, email, password, address,
# birth_date, credit_card_num, credit_card_exp, security_answer,
# account_balance

user_df = pd.DataFrame([[
    x,
    person.name(),
    person.surname(),
    person.gender(),
    person.email(),
    hashed_passwd(person.password()),
    address.address(),
    person.age(),
    payment.credit_card_number(),
    payment.credit_card_expiration_date(),
    text.word(),
    account_balance(),
    np.random.randint(1, 11)
] for x in range(10000)])

user_df.columns = [
    "user_id", "first_name", "last_name", "gender", "email", "password_hashed",
    "address", "age", "credit_card_num", "credit_card_exp", "security_answer",
    "account_balance", "marketing_level"