K.set_session(sess) if args.small_part: args.save_every = 2**30 # Build readers, discretizers, normalizers train_reader = DecompensationReader( dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'train_listfile.csv')) val_reader = DecompensationReader(dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join( args.data, 'val_listfile.csv')) discretizer = OneHotEncoder(impute_strategy=args.imputation) discretizer_header = discretizer.transform( train_reader.read_example(0)["X"])[2].split(',') cont_channels = [ i for (i, x) in enumerate(discretizer_header) if x.find("->") == -1 ] normalizer = Normalizer( fields=cont_channels) # choose here which columns to standardize normalizer_state = args.normalizer_state if normalizer_state is None: normalizer_state = 'decomp_onehotenc_n:{}.normalizer'.format( args.n_samples) normalizer_state = os.path.join(os.path.dirname(__file__), normalizer_state) normalizer.load_params(normalizer_state)
train_reader = DecompensationReader( dataset_dir='../../data/decompensation/train/', listfile='../../data/decompensation/train_listfile.csv') val_reader = DecompensationReader( dataset_dir='../../data/decompensation/train/', listfile='../../data/decompensation/val_listfile.csv') discretizer = Discretizer(timestep=args.timestep, store_masks=True, imput_strategy='previous', start_time='zero') discretizer_header = discretizer.transform( train_reader.read_example(0)[0])[1].split(',') cont_channels = [ i for (i, x) in enumerate(discretizer_header) if x.find("->") == -1 ] normalizer = Normalizer(fields=cont_channels) # choose here onlycont vs all normalizer.load_params( 'decomp_ts{}.input_str:previous.n1e5.start_time:zero.normalizer'.format( args.timestep)) args_dict = dict(args._get_kwargs()) args_dict['header'] = discretizer_header # init class print "==> using network %s" % args.network network_module = importlib.import_module("networks." + args.network)
small_part=args.small_part) else: train_reader = DecompensationReader(dataset_dir='../../data/decompensation/train/', listfile='../../data/decompensation/train_listfile.csv') val_reader = DecompensationReader(dataset_dir='../../data/decompensation/train/', listfile='../../data/decompensation/val_listfile.csv') discretizer = Discretizer(timestep=args.timestep, store_masks=True, imput_strategy='previous', start_time='zero') if args.deep_supervision: discretizer_header = discretizer.transform(train_data_loader._data["X"][0])[1].split(',') else: discretizer_header = discretizer.transform(train_reader.read_example(0)["X"])[1].split(',') cont_channels = [i for (i, x) in enumerate(discretizer_header) if x.find("->") == -1] normalizer = Normalizer(fields=cont_channels) # choose here onlycont vs all normalizer.load_params('decomp_ts{}.input_str:previous.n1e5.start_time:zero.normalizer'.format(args.timestep)) args_dict = dict(args._get_kwargs()) args_dict['header'] = discretizer_header args_dict['task'] = 'decomp' # Build the model print "==> using model {}".format(args.network) model_module = imp.load_source(os.path.basename(args.network), args.network) model = model_module.Network(**args_dict) suffix = "{}.bs{}{}{}.ts{}".format("" if not args.deep_supervision else ".dsup",
parser.set_defaults(small_part=False) args = parser.parse_args() print args train_reader = DecompensationReader(dataset_dir='../../data/decompensation/train/', listfile='../../data/decompensation/train_listfile.csv') val_reader = DecompensationReader(dataset_dir='../../data/decompensation/train/', listfile='../../data/decompensation/val_listfile.csv') discretizer = Discretizer(timestep=args.timestep, store_masks=True, imput_strategy='previous', start_time='zero') discretizer_header = discretizer.transform(train_reader.read_example(0)[0])[1].split(',') cont_channels = [i for (i, x) in enumerate(discretizer_header) if x.find("->") == -1] normalizer = Normalizer(fields=cont_channels) # choose here onlycont vs all normalizer.load_params('decomp_ts0.8.input_str:previous.n1e5.start_time:zero.normalizer') args_dict = dict(args._get_kwargs()) # init class print "==> using network %s" % args.network network_module = importlib.import_module("networks." + args.network) network = network_module.Network(**args_dict) time_step_suffix = ".ts%.2f" % args.timestep network_name = args.prefix + network.say_name() + time_step_suffix print "==> network_name:", network_name
condensed=args.condensed) val_reader = DecompensationReader( dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'val_listfile.csv'), sources=sources, timesteps=args.timesteps, condensed=args.condensed) train_reader = DecompensationReader( dataset_dir=os.path.join(args.data, 'train'), listfile=os.path.join(args.data, 'train_listfile.csv'), sources=sources, timesteps=args.timesteps, condensed=args.condensed) reader_header = train_reader.read_example(0)['header'] n_bins = len(train_reader.read_example(0)) discretizer = Discretizer(timestep=args.timestep, store_masks=True, impute_strategy='previous', start_time='zero', header=reader_header, sources=sources) if args.deep_supervision: discretizer_header = discretizer.transform( train_data_loader._data["X"][0])[1].split(',') else: discretizer_header = discretizer.transform( train_reader.read_example(0)["X"])[1].split(',')