normalizer, args.batch_size, shuffle=True) val_data_gen = utils.BatchGenDeepSupervision(val_data_loader, discretizer, normalizer, args.batch_size, shuffle=False) else: # Set number of batches in one epoch train_nbatches = 2000 val_nbatches = 1000 if args.small_part: train_nbatches = 40 val_nbatches = 40 train_data_gen = utils.BatchGen(train_reader, discretizer, normalizer, args.batch_size, train_nbatches, True) val_data_gen = utils.BatchGen(val_reader, discretizer, normalizer, args.batch_size, val_nbatches, False) if args.mode == 'train': # Prepare training path = os.path.join( args.output_dir, 'keras_states/' + model.final_name + '.chunk{epoch}.test{val_loss}.state') metrics_callback = keras_utils.DecompensationMetrics( train_data_gen=train_data_gen, val_data_gen=val_data_gen, deep_supervision=args.deep_supervision, batch_size=args.batch_size,
# Load data and prepare generators if args.deep_supervision: train_data_gen = utils.BatchGenDeepSupervisoin(train_data_loader, discretizer, normalizer, args.batch_size) val_data_gen = utils.BatchGenDeepSupervisoin(val_data_loader, discretizer, normalizer, args.batch_size) else: # Set number of batches in one epoch train_nbatches = 2000 val_nbatches = 1000 if (args.small_part): train_nbatches = 40 val_nbatches = 40 train_data_gen = utils.BatchGen(train_reader, discretizer, normalizer, args.batch_size, train_nbatches) val_data_gen = utils.BatchGen(val_reader, discretizer, normalizer, args.batch_size, val_nbatches) #train_data_gen.steps = train_reader.get_number_of_examples() // args.batch_size #val_data_gen.steps = val_reader.get_number_of_examples() // args.batch_size if args.mode == 'train': # Prepare training path = 'keras_states/' + model.final_name + '.chunk{epoch}.test{val_loss}.state' metrics_callback = keras_utils.MetricsBinaryFromGenerator( train_data_gen, val_data_gen, args.batch_size, args.verbose) # make sure save directory exists dirname = os.path.dirname(path) if not os.path.exists(dirname):
# Load data and prepare generators if args.deep_supervision: train_data_gen = utils.BatchGenDeepSupervisoin(train_data_loader, discretizer, normalizer, args.batch_size, True) val_data_gen = utils.BatchGenDeepSupervisoin(val_data_loader, discretizer, normalizer, args.batch_size, False) else: # Set number of batches in one epoch train_nbatches = 2000 val_nbatches = 1000 if args.small_part: train_nbatches = 40 val_nbatches = 40 train_data_gen = utils.BatchGen(train_reader, discretizer, normalizer, args.batch_size, train_nbatches, True) val_data_gen = utils.BatchGen(val_reader, discretizer, normalizer, args.batch_size, val_nbatches, False) if args.mode == 'train': # Prepare training path = 'keras_states/' + model.final_name + '.chunk{epoch}.test{val_loss}.state' metrics_callback = keras_utils.MetricsBinaryFromGenerator( train_data_gen, val_data_gen, args.batch_size, args.verbose) # make sure save directory exists dirname = os.path.dirname(path) if not os.path.exists(dirname): os.makedirs(dirname) saver = ModelCheckpoint(path, verbose=1, period=args.save_every)