def test_lenet_mnist_coverage_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") # load network net = Net() model = Model(net) # initialize fuzz test with training dataset training_data = (np.random.random((10000, 10))*20).astype(np.float32) model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, training_data) # fuzz test with original test data # get test data test_data = (np.random.random((2000, 10))*20).astype(np.float32) test_labels = np.random.randint(0, 10, 2000) test_labels = (np.eye(10)[test_labels]).astype(np.float32) model_fuzz_test.calculate_coverage(test_data) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) # generate adv_data attack = FastGradientSignMethod(net, eps=0.3) adv_data = attack.batch_generate(test_data, test_labels, batch_size=32) model_fuzz_test.calculate_coverage(adv_data, bias_coefficient=0.5) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac())
def test_lenet_mnist_coverage_cpu(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") # load network net = Net() model = Model(net) # initialize fuzz test with training dataset neuron_num = 10 segmented_num = 1000 training_data = (np.random.random((10000, 10)) * 20).astype(np.float32) model_fuzz_test = ModelCoverageMetrics(model, neuron_num, segmented_num, training_data) # fuzz test with original test data # get test data test_data = (np.random.random((2000, 10)) * 20).astype(np.float32) test_labels = np.random.randint(0, 10, 2000).astype(np.int32) model_fuzz_test.calculate_coverage(test_data) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) # generate adv_data loss = SoftmaxCrossEntropyWithLogits(sparse=True) attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) adv_data = attack.batch_generate(test_data, test_labels, batch_size=32) model_fuzz_test.calculate_coverage(adv_data, bias_coefficient=0.5) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac())
def test_fast_gradient_sign_method(): """ Fast gradient sign method unit test. """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) attack = FastGradientSignMethod(Net()) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Fast gradient sign method: generate' \ ' value must not be equal to' \ ' original value.'
def test_lenet_mnist_coverage(): # upload trained network ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_path) load_param_into_net(net, load_dict) model = Model(net) # get training data data_list = "../common/dataset/MNIST/train" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=True) train_images = [] for data in ds.create_tuple_iterator(output_numpy=True): images = data[0].astype(np.float32) train_images.append(images) train_images = np.concatenate(train_images, axis=0) # initialize fuzz test with training dataset model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, train_images) # fuzz test with original test data # get test data data_list = "../common/dataset/MNIST/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=True) test_images = [] test_labels = [] for data in ds.create_tuple_iterator(output_numpy=True): images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) test_images = np.concatenate(test_images, axis=0) test_labels = np.concatenate(test_labels, axis=0) model_fuzz_test.calculate_coverage(test_images) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) # generate adv_data loss = SoftmaxCrossEntropyWithLogits(sparse=True) attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) adv_data = attack.batch_generate(test_images, test_labels, batch_size=32) model_fuzz_test.calculate_coverage(adv_data, bias_coefficient=0.5) LOGGER.info(TAG, 'KMNC of this adv data is : %s', model_fuzz_test.get_kmnc()) LOGGER.info(TAG, 'NBC of this adv data is : %s', model_fuzz_test.get_nbc()) LOGGER.info(TAG, 'SNAC of this adv data is : %s', model_fuzz_test.get_snac())
def test_fast_gradient_sign_method(): """ FGSM-Attack test """ context.set_context(mode=context.GRAPH_MODE) # get network net = resnet50_cifar10(10) # create test data test_images = np.random.rand(64, 3, 224, 224).astype(np.float32) test_labels = np.random.randint(10, size=64).astype(np.int32) # attacking loss_fn = CrossEntropyLoss() attack = FastGradientSignMethod(net, eps=0.1, loss_fn=loss_fn) adv_data = attack.batch_generate(test_images, test_labels, batch_size=32) assert np.any(adv_data != test_images)
def test_ead(): """UT for ensemble adversarial defense.""" num_classes = 10 batch_size = 64 sparse = False context.set_context(mode=context.GRAPH_MODE) context.set_context(device_target='Ascend') # create test data inputs = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) labels = np.random.randint(num_classes, size=batch_size).astype(np.int32) if not sparse: labels = np.eye(num_classes)[labels].astype(np.float32) net = Net() loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=sparse) optimizer = Momentum(net.trainable_params(), 0.001, 0.9) net = Net() fgsm = FastGradientSignMethod(net, loss_fn=loss_fn) pgd = ProjectedGradientDescent(net, loss_fn=loss_fn) ead = EnsembleAdversarialDefense(net, [fgsm, pgd], loss_fn=loss_fn, optimizer=optimizer) LOGGER.set_level(logging.DEBUG) LOGGER.debug(TAG, '---start ensemble adversarial defense--') loss = ead.defense(inputs, labels) LOGGER.debug(TAG, '---end ensemble adversarial defense--') assert np.any(loss >= 0.0)
def test_nad_method(): """ NAD-Defense test. """ mnist_path = "../../common/dataset/MNIST" batch_size = 32 # 1. train original model ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"), batch_size=batch_size, repeat_size=1) net = LeNet5() loss = SoftmaxCrossEntropyWithLogits(sparse=True) opt = nn.Momentum(net.trainable_params(), 0.01, 0.09) model = Model(net, loss, opt, metrics=None) model.train(10, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=False) # 2. get test data ds_test = generate_mnist_dataset(os.path.join(mnist_path, "test"), batch_size=batch_size, repeat_size=1) inputs = [] labels = [] for data in ds_test.create_tuple_iterator(): inputs.append(data[0].asnumpy().astype(np.float32)) labels.append(data[1].asnumpy()) inputs = np.concatenate(inputs) labels = np.concatenate(labels) # 3. get accuracy of test data on original model net.set_train(False) acc_list = [] batchs = inputs.shape[0] // batch_size for i in range(batchs): batch_inputs = inputs[i * batch_size:(i + 1) * batch_size] batch_labels = labels[i * batch_size:(i + 1) * batch_size] logits = net(Tensor(batch_inputs)).asnumpy() label_pred = np.argmax(logits, axis=1) acc_list.append(np.mean(batch_labels == label_pred)) LOGGER.info(TAG, 'accuracy of TEST data on original model is : %s', np.mean(acc_list)) # 4. get adv of test data attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) adv_data = attack.batch_generate(inputs, labels) LOGGER.info(TAG, 'adv_data.shape is : %s', adv_data.shape) # 5. get accuracy of adv data on original model acc_list = [] batchs = adv_data.shape[0] // batch_size for i in range(batchs): batch_inputs = adv_data[i * batch_size:(i + 1) * batch_size] batch_labels = labels[i * batch_size:(i + 1) * batch_size] logits = net(Tensor(batch_inputs)).asnumpy() label_pred = np.argmax(logits, axis=1) acc_list.append(np.mean(batch_labels == label_pred)) LOGGER.info(TAG, 'accuracy of adv data on original model is : %s', np.mean(acc_list)) # 6. defense ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"), batch_size=batch_size, repeat_size=1) inputs_train = [] labels_train = [] for data in ds_train.create_tuple_iterator(): inputs_train.append(data[0].asnumpy().astype(np.float32)) labels_train.append(data[1].asnumpy()) inputs_train = np.concatenate(inputs_train) labels_train = np.concatenate(labels_train) net.set_train() nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt, bounds=(0.0, 1.0), eps=0.3) nad.batch_defense(inputs_train, labels_train, batch_size=32, epochs=10) # 7. get accuracy of test data on defensed model net.set_train(False) acc_list = [] batchs = inputs.shape[0] // batch_size for i in range(batchs): batch_inputs = inputs[i * batch_size:(i + 1) * batch_size] batch_labels = labels[i * batch_size:(i + 1) * batch_size] logits = net(Tensor(batch_inputs)).asnumpy() label_pred = np.argmax(logits, axis=1) acc_list.append(np.mean(batch_labels == label_pred)) LOGGER.info(TAG, 'accuracy of TEST data on defensed model is : %s', np.mean(acc_list)) # 8. get accuracy of adv data on defensed model acc_list = [] batchs = adv_data.shape[0] // batch_size for i in range(batchs): batch_inputs = adv_data[i * batch_size:(i + 1) * batch_size] batch_labels = labels[i * batch_size:(i + 1) * batch_size] logits = net(Tensor(batch_inputs)).asnumpy() label_pred = np.argmax(logits, axis=1) acc_list.append(np.mean(batch_labels == label_pred)) LOGGER.info(TAG, 'accuracy of adv data on defensed model is : %s', np.mean(acc_list))
def test_fast_gradient_sign_method(): """ FGSM-Attack test for CPU device. """ # upload trained network ckpt_path = '../../../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_path) load_param_into_net(net, load_dict) # get test data data_list = "../../../common/dataset/MNIST/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size) # prediction accuracy before attack model = Model(net) batch_num = 3 # the number of batches of attacking samples test_images = [] test_labels = [] predict_labels = [] i = 0 for data in ds.create_tuple_iterator(output_numpy=True): i += 1 images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), axis=1) predict_labels.append(pred_labels) if i >= batch_num: break predict_labels = np.concatenate(predict_labels) true_labels = np.concatenate(test_labels) accuracy = np.mean(np.equal(predict_labels, true_labels)) LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) # attacking loss = SoftmaxCrossEntropyWithLogits(sparse=True) attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) start_time = time.clock() adv_data = attack.batch_generate(np.concatenate(test_images), true_labels, batch_size=32) stop_time = time.clock() np.save('./adv_data', adv_data) pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() # rescale predict confidences into (0, 1). pred_logits_adv = softmax(pred_logits_adv, axis=1) pred_labels_adv = np.argmax(pred_logits_adv, axis=1) accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), np.eye(10)[true_labels], adv_data.transpose(0, 2, 3, 1), pred_logits_adv) LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) LOGGER.info(TAG, 'The average structural similarity between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_ssim()) LOGGER.info(TAG, 'The average costing time is %s', (stop_time - start_time)/(batch_num*batch_size))
def test_defense_evaluation(): # load trained network current_dir = os.path.dirname(os.path.abspath(__file__)) ckpt_path = os.path.abspath( os.path.join( current_dir, '../../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' )) wb_net = LeNet5() load_dict = load_checkpoint(ckpt_path) load_param_into_net(wb_net, load_dict) # get test data data_list = "../../common/dataset/MNIST/test" batch_size = 32 ds_test = generate_mnist_dataset(data_list, batch_size=batch_size) inputs = [] labels = [] for data in ds_test.create_tuple_iterator(output_numpy=True): inputs.append(data[0].astype(np.float32)) labels.append(data[1]) inputs = np.concatenate(inputs).astype(np.float32) labels = np.concatenate(labels).astype(np.int32) target_label = np.random.randint(0, 10, size=labels.shape[0]) for idx in range(labels.shape[0]): while target_label[idx] == labels[idx]: target_label[idx] = np.random.randint(0, 10) target_label = np.eye(10)[target_label].astype(np.float32) attacked_size = 50 benign_size = 500 attacked_sample = inputs[:attacked_size] attacked_true_label = labels[:attacked_size] benign_sample = inputs[attacked_size:attacked_size + benign_size] wb_model = ModelToBeAttacked(wb_net) # gen white-box adversarial examples of test data loss = SoftmaxCrossEntropyWithLogits(sparse=True) wb_attack = FastGradientSignMethod(wb_net, eps=0.3, loss_fn=loss) wb_adv_sample = wb_attack.generate(attacked_sample, attacked_true_label) wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1) accuracy_test = np.mean( np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1), attacked_true_label)) LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s", accuracy_test) accuracy_adv = np.mean( np.equal(np.argmax(wb_raw_preds, axis=1), attacked_true_label)) LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s", accuracy_adv) # improve the robustness of model with white-box adversarial examples opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09) nad = NaturalAdversarialDefense(wb_net, loss_fn=loss, optimizer=opt, bounds=(0.0, 1.0), eps=0.3) wb_net.set_train(False) nad.batch_defense(inputs[:5000], labels[:5000], batch_size=32, epochs=10) wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy() wb_def_preds = softmax(wb_def_preds, axis=1) accuracy_def = np.mean( np.equal(np.argmax(wb_def_preds, axis=1), attacked_true_label)) LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def) # calculate defense evaluation metrics for defense against white-box attack wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds, attacked_true_label) LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack') LOGGER.info( TAG, 'classification accuracy variance (CAV) is : {:.2f}'.format( wb_def_evaluate.cav())) LOGGER.info( TAG, 'classification rectify ratio (CRR) is : {:.2f}'.format( wb_def_evaluate.crr())) LOGGER.info( TAG, 'classification sacrifice ratio (CSR) is : {:.2f}'.format( wb_def_evaluate.csr())) LOGGER.info( TAG, 'classification confidence variance (CCV) is : {:.2f}'.format( wb_def_evaluate.ccv())) LOGGER.info( TAG, 'classification output stability is : {:.2f}'.format( wb_def_evaluate.cos())) # calculate defense evaluation metrics for defense against black-box attack LOGGER.info(TAG, 'defense evaluation for black-box adversarial attack') bb_raw_preds = [] bb_def_preds = [] raw_query_counts = [] raw_query_time = [] def_query_counts = [] def_query_time = [] def_detection_counts = [] # gen black-box adversarial examples of test data bb_net = LeNet5() load_param_into_net(bb_net, load_dict) bb_model = ModelToBeAttacked(bb_net, defense=False) attack_rm = GeneticAttack(model=bb_model, pop_size=6, mutation_rate=0.05, per_bounds=0.5, step_size=0.25, temp=0.1, sparse=False) attack_target_label = target_label[:attacked_size] true_label = labels[:attacked_size + benign_size] # evaluate robustness of original model # gen black-box adversarial examples of test data for idx in range(attacked_size): raw_st = time.time() _, raw_a, raw_qc = attack_rm.generate( np.expand_dims(attacked_sample[idx], axis=0), np.expand_dims(attack_target_label[idx], axis=0)) raw_t = time.time() - raw_st bb_raw_preds.extend(softmax(bb_model.predict(raw_a), axis=1)) raw_query_counts.extend(raw_qc) raw_query_time.append(raw_t) for idx in range(benign_size): raw_st = time.time() bb_raw_pred = softmax(bb_model.predict( np.expand_dims(benign_sample[idx], axis=0)), axis=1) raw_t = time.time() - raw_st bb_raw_preds.extend(bb_raw_pred) raw_query_counts.extend([0]) raw_query_time.append(raw_t) accuracy_test = np.mean( np.equal(np.argmax(bb_raw_preds[0:len(attack_target_label)], axis=1), np.argmax(attack_target_label, axis=1))) LOGGER.info(TAG, "attack success before adv defense is : %s", accuracy_test) # improve the robustness of model with similarity-based detector bb_def_model = ModelToBeAttacked(bb_net, defense=True, train_images=inputs[0:6000]) # attack defensed model attack_dm = GeneticAttack(model=bb_def_model, pop_size=6, mutation_rate=0.05, per_bounds=0.5, step_size=0.25, temp=0.1, sparse=False) for idx in range(attacked_size): def_st = time.time() _, def_a, def_qc = attack_dm.generate( np.expand_dims(attacked_sample[idx], axis=0), np.expand_dims(attack_target_label[idx], axis=0)) def_t = time.time() - def_st det_res = bb_def_model.get_detected_result() def_detection_counts.append(np.sum(det_res[-def_qc[0]:])) bb_def_preds.extend(softmax(bb_def_model.predict(def_a), axis=1)) def_query_counts.extend(def_qc) def_query_time.append(def_t) for idx in range(benign_size): def_st = time.time() bb_def_pred = softmax(bb_def_model.predict( np.expand_dims(benign_sample[idx], axis=0)), axis=1) def_t = time.time() - def_st det_res = bb_def_model.get_detected_result() def_detection_counts.append(np.sum(det_res[-1])) bb_def_preds.extend(bb_def_pred) def_query_counts.extend([0]) def_query_time.append(def_t) accuracy_adv = np.mean( np.equal(np.argmax(bb_def_preds[0:len(attack_target_label)], axis=1), np.argmax(attack_target_label, axis=1))) LOGGER.info(TAG, "attack success rate after adv defense is : %s", accuracy_adv) bb_raw_preds = np.array(bb_raw_preds).astype(np.float32) bb_def_preds = np.array(bb_def_preds).astype(np.float32) # check evaluate data max_queries = 6000 def_evaluate = BlackDefenseEvaluate(bb_raw_preds, bb_def_preds, np.array(raw_query_counts), np.array(def_query_counts), np.array(raw_query_time), np.array(def_query_time), np.array(def_detection_counts), true_label, max_queries) LOGGER.info( TAG, 'query count variance of adversaries is : {:.2f}'.format( def_evaluate.qcv())) LOGGER.info( TAG, 'attack success rate variance of adversaries ' 'is : {:.2f}'.format(def_evaluate.asv())) LOGGER.info( TAG, 'false positive rate (FPR) of the query-based detector ' 'is : {:.2f}'.format(def_evaluate.fpr())) LOGGER.info( TAG, 'the benign query response time variance (QRV) ' 'is : {:.2f}'.format(def_evaluate.qrv()))