def test_ensemble_detector(): """ Compute mindspore result. """ np.random.seed(6) adv = np.random.rand(4, 4).astype(np.float32) model = Model(Net()) auto_encoder = Model(AutoNet()) random_label = np.random.randint(10, size=4) labels = np.eye(10)[random_label] magnet_detector = ErrorBasedDetector(auto_encoder) region_detector = RegionBasedDetector(model) # use this to enable radius in region_detector region_detector.fit(adv, labels) detectors = [magnet_detector, region_detector] detector = EnsembleDetector(detectors) detected_res = detector.detect(adv) expected_value = np.array([0, 1, 0, 0]) assert np.all(detected_res == expected_value)
def test_error(): np.random.seed(6) adv = np.random.rand(4, 4).astype(np.float32) model = Model(Net()) auto_encoder = Model(AutoNet()) random_label = np.random.randint(10, size=4) labels = np.eye(10)[random_label] magnet_detector = ErrorBasedDetector(auto_encoder) region_detector = RegionBasedDetector(model) # use this to enable radius in region_detector detectors = [magnet_detector, region_detector] detector = EnsembleDetector(detectors) with pytest.raises(NotImplementedError): assert detector.fit(adv, labels)
def test_region_based_classification(): """ Compute mindspore result. """ np.random.seed(5) ori = np.random.rand(4, 4).astype(np.float32) labels = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0]]).astype(np.int32) np.random.seed(6) adv = np.random.rand(4, 4).astype(np.float32) model = Model(Net()) detector = RegionBasedDetector(model) radius = detector.fit(ori, labels) detector.set_radius(radius) detected_res = detector.detect(adv) expected_value = np.array([0, 0, 1, 0]) assert np.all(detected_res == expected_value)
def test_value_error(): np.random.seed(5) ori = np.random.rand(4, 4).astype(np.float32) labels = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0]]).astype(np.int32) np.random.seed(6) adv = np.random.rand(4, 4).astype(np.float32) model = Model(Net()) # model should be mindspore model with pytest.raises(TypeError): assert RegionBasedDetector(Net()) with pytest.raises(ValueError): assert RegionBasedDetector(model, number_points=-1) with pytest.raises(ValueError): assert RegionBasedDetector(model, initial_radius=-1) with pytest.raises(ValueError): assert RegionBasedDetector(model, max_radius=-2.2) with pytest.raises(ValueError): assert RegionBasedDetector(model, search_step=0) with pytest.raises(TypeError): assert RegionBasedDetector(model, sparse='False') detector = RegionBasedDetector(model) with pytest.raises(TypeError): # radius must not empty assert detector.detect(adv) radius = detector.fit(ori, labels) detector.set_radius(radius) with pytest.raises(TypeError): # adv type should be in (list, tuple, numpy.ndarray) assert detector.detect(adv.tostring())