コード例 #1
0
    def _parse_summary_value(value, plugin):
        """
        Parse summary value and create corresponding container according to plugin.

        Args:
            value (Summary.Value): Value message in summary file.
            plugin (str): Plugin value.

        Returns:
            Union[Summary.Value, HistogramContainer, TensorContainer, ImageContainer], original summary value
            or an instance of  HistogramContainer or TensorContainer or ImageContainer.
        """
        tensor_event_value = getattr(value, plugin)
        if plugin == PluginNameEnum.HISTOGRAM.value:
            tensor_event_value = HistogramContainer(tensor_event_value)
            # Drop steps if original_buckets_count exceeds HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT
            # to avoid time-consuming re-sample process.
            if tensor_event_value.histogram.original_buckets_count > Histogram.MAX_ORIGINAL_BUCKETS_COUNT:
                logger.info('original_buckets_count exceeds '
                            'HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT')
                return None

        elif plugin == PluginNameEnum.TENSOR.value:
            tensor_event_value = TensorContainer(tensor_event_value)
            if tensor_event_value.size > MAX_TENSOR_COUNT:
                logger.warning(
                    'tag: %s/tensor, dims: %s, tensor count: %d exceeds %d and drop it.',
                    value.tag, tensor_event_value.dims,
                    tensor_event_value.size, MAX_TENSOR_COUNT)
                return None

        elif plugin == PluginNameEnum.IMAGE.value:
            tensor_event_value = ImageContainer(tensor_event_value)

        return tensor_event_value
コード例 #2
0
ファイル: ms_data_loader.py プロジェクト: ZeroWangZY/DL-VIS
    def _event_parse(self, event):
        """
        Transform `Event` data to tensor_event and update it to EventsData.

        Args:
            event (Event): Message event in summary proto, data read from file handler.
        """
        if event.HasField('summary'):
            for value in event.summary.value:
                if value.HasField('scalar_value'):
                    tag = '{}/{}'.format(value.tag, PluginNameEnum.SCALAR.value)
                    tensor_event = TensorEvent(wall_time=event.wall_time,
                                               step=event.step,
                                               tag=tag,
                                               plugin_name=PluginNameEnum.SCALAR.value,
                                               value=value.scalar_value,
                                               filename=self._latest_filename)
                    self._events_data.add_tensor_event(tensor_event)

                if value.HasField('image'):
                    tag = '{}/{}'.format(value.tag, PluginNameEnum.IMAGE.value)
                    tensor_event = TensorEvent(wall_time=event.wall_time,
                                               step=event.step,
                                               tag=tag,
                                               plugin_name=PluginNameEnum.IMAGE.value,
                                               value=value.image,
                                               filename=self._latest_filename)
                    self._events_data.add_tensor_event(tensor_event)

                if value.HasField('histogram'):
                    histogram_msg = HistogramContainer(value.histogram)
                    # Drop steps if original_buckets_count exceeds HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT
                    # to avoid time-consuming re-sample process.
                    if histogram_msg.original_buckets_count > HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT:
                        logger.warning('original_buckets_count exceeds HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT')
                    else:
                        tag = '{}/{}'.format(value.tag, PluginNameEnum.HISTOGRAM.value)
                        tensor_event = TensorEvent(wall_time=event.wall_time,
                                                   step=event.step,
                                                   tag=tag,
                                                   plugin_name=PluginNameEnum.HISTOGRAM.value,
                                                   value=histogram_msg,
                                                   filename=self._latest_filename)
                        self._events_data.add_tensor_event(tensor_event)

        if event.HasField('graph_def'):
            graph_proto = event.graph_def
            graph = MSGraph()
            graph.build_graph(graph_proto)
            tensor_event = TensorEvent(wall_time=event.wall_time,
                                       step=event.step,
                                       tag=self._latest_filename,
                                       plugin_name=PluginNameEnum.GRAPH.value,
                                       value=graph,
                                       filename=self._latest_filename)

            try:
                graph_tags = self._events_data.list_tags_by_plugin(PluginNameEnum.GRAPH.value)
            except KeyError:
                graph_tags = []
            summary_tags = self.filter_files(graph_tags)
            for tag in summary_tags:
                self._events_data.delete_tensor_event(tag)

            self._events_data.add_tensor_event(tensor_event)
コード例 #3
0
    def _event_parse(self, event):
        """
        Transform `Event` data to tensor_event and update it to EventsData.

        Args:
            event (Event): Message event in summary proto, data read from file handler.
        """
        plugins = {
            'scalar_value': PluginNameEnum.SCALAR,
            'image': PluginNameEnum.IMAGE,
            'histogram': PluginNameEnum.HISTOGRAM,
        }

        if event.HasField('summary'):
            for value in event.summary.value:
                for plugin in plugins:
                    if not value.HasField(plugin):
                        continue
                    plugin_name_enum = plugins[plugin]
                    tensor_event_value = getattr(value, plugin)

                    if plugin == 'histogram':
                        tensor_event_value = HistogramContainer(
                            tensor_event_value)
                        # Drop steps if original_buckets_count exceeds HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT
                        # to avoid time-consuming re-sample process.
                        if tensor_event_value.original_buckets_count > HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT:
                            logger.warning(
                                'original_buckets_count exceeds '
                                'HistogramContainer.MAX_ORIGINAL_BUCKETS_COUNT'
                            )
                            continue

                    tensor_event = TensorEvent(
                        wall_time=event.wall_time,
                        step=event.step,
                        tag='{}/{}'.format(value.tag, plugin_name_enum.value),
                        plugin_name=plugin_name_enum.value,
                        value=tensor_event_value,
                        filename=self._latest_filename)
                    self._events_data.add_tensor_event(tensor_event)

        elif event.HasField('graph_def'):
            graph = MSGraph()
            graph.build_graph(event.graph_def)
            tensor_event = TensorEvent(wall_time=event.wall_time,
                                       step=event.step,
                                       tag=self._latest_filename,
                                       plugin_name=PluginNameEnum.GRAPH.value,
                                       value=graph,
                                       filename=self._latest_filename)

            try:
                graph_tags = self._events_data.list_tags_by_plugin(
                    PluginNameEnum.GRAPH.value)
            except KeyError:
                graph_tags = []

            summary_tags = self.filter_files(graph_tags)
            for tag in summary_tags:
                self._events_data.delete_tensor_event(tag)

            self._events_data.add_tensor_event(tensor_event)