def __init__(self): self.condition_mgr = ConditionMgr() self.cache_store = DebuggerCache() self.grpc_server = DebuggerGrpcServer(self.cache_store, self.condition_mgr) self.grpc_server_manager = None self.back_server = None
def __init__(self, grpc_port=None): self.grpc_port = grpc_port self.cache_store = DebuggerCache() self.grpc_server = DebuggerGrpcServer(self.cache_store) self.grpc_server_manager = None self.back_server = None self._watch_point_id = 0
def test_get_dbg_online_server(self): """Get debugger online server""" context = DebuggerServerContext(dbg_mode='online') server_obj = self._dbg_server_factory.get_debugger_server( DebuggerCache(), context) server_obj.start() server_obj.stop()
def test_get_dbg_offline_server(self, mock_import): """Get debugger offline server""" mock_import.return_value = mock_dbg_services context = DebuggerServerContext(dbg_mode='offline', dbg_dir=self._dbg_dir) server_obj = self._dbg_server_factory.get_debugger_server( DebuggerCache(), context) server_obj.start() server_obj.stop()
def setup_method(self): """Prepare debugger server object.""" cache_store = DebuggerCache() cache_store.initialize() self._server = TrainingControlOperator(cache_store)
def setup_method(self): """Initialize for each testcase.""" cache_store = DebuggerCache() self._server = DebuggerGrpcServer(cache_store, condition_mgr=ConditionMgr())
class DebuggerServer: """The server manager of debugger.""" def __init__(self): self.condition_mgr = ConditionMgr() self.cache_store = DebuggerCache() self.grpc_server = DebuggerGrpcServer(self.cache_store, self.condition_mgr) self.grpc_server_manager = None self.back_server = None def get_condition_collections(self, train_id): """Get default condition_collections""" metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) condition_context = ConditionContext(metadata_stream.backend, metadata_stream.step) log.debug("Train_id: %s, backend: %s", train_id, condition_context.backend) return self.condition_mgr.get_all_collections(condition_context) def set_recommended_watch_points(self, set_recommended, train_id): """set recommended watch points.""" if not isinstance(set_recommended, bool): log.error("Bool param should be given for set_recommended") raise DebuggerParamValueError("Bool param should be given.") metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.recommendation_confirmed: log.error("User has confirmed setting recommended watchpoints") raise DebuggerSetRecommendWatchpointsError() metadata_stream.recommendation_confirmed = True condition_context = ConditionContext(metadata_stream.backend, metadata_stream.step) log.debug("Train_id: %s, backend: %s", train_id, condition_context.backend) res = metadata_stream.get(['state', 'enable_recheck']) if set_recommended: res['id'] = self._add_recommended_watchpoints(condition_context) return res def _add_recommended_watchpoints(self, condition_context): """Add predefined watchpoints.""" log.debug("Add predefined watchpoints.") graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) watchpoints = recommend_watchpoints(self.condition_mgr, graph_stream, condition_context) watch_point_stream_handler = self.cache_store.get_stream_handler( Streams.WATCHPOINT) watch_points_ids = [] for watchpoint in watchpoints: watch_points_id = watch_point_stream_handler.create_watchpoint( watch_condition=watchpoint.get_watch_condition_dict(), watch_nodes=watchpoint.watch_nodes, name=watchpoint.name, condition_mgr=self.condition_mgr) watch_points_ids.append(watch_points_id) return watch_points_ids def start(self): """Start server.""" grpc_port = settings.DEBUGGER_PORT if hasattr( settings, 'DEBUGGER_PORT') else 50051 host = settings.HOST if hasattr(settings, 'HOST') else '[::]' hostname = "{}:{}".format(host, grpc_port) # initialize a grpc server grpc_server_manager = grpc.server( futures.ThreadPoolExecutor(max_workers=10)) grpc_server_base.add_EventListenerServicer_to_server( self.grpc_server, grpc_server_manager) grpc_server_manager.add_insecure_port(hostname) grpc_server_manager.start() my_server_thread = Thread( target=grpc_server_manager.wait_for_termination) # start grpc server my_server_thread.start() self.back_server = my_server_thread self.grpc_server_manager = grpc_server_manager # register stop server handler signal.signal(signal.SIGINT, self._stop_handler) log.info("Start grpc server %s", hostname) def _stop_handler(self, signum, frame): """Register stop server handler.""" self.stop() log.debug("Deal with stop signal: %s, %s", signum, frame) def stop(self): """Stop debugger server.""" log.info("Send terminate info to client.") self.control({'mode': 'terminate'}) self.grpc_server_manager.stop(grace=None) self.back_server.join() log.info("Stop debugger server.") def poll_data(self, pos): """ Get the pos-th data from DebuggerCache. Args: pos (int): The index of data. Returns: dict, the data to be updated. """ if not isinstance(pos, str): log.error("Pos should be string. Received: %s", pos) raise DebuggerParamValueError("Pos should be string.") reply = self.cache_store.get_data(pos) return reply def search(self, filter_condition): """ Search for single node in graph. Args: filter_condition (dict): Filter condition. - name (str): The name pattern. - graph_name (str): The graph name. - watch_point_id (int): The id of watchpoint. Default: 0. - node_category (str): The node_category. Default: None Returns: dict, the searched nodes. """ log.info("receive search request with filter_condition: %s", filter_condition) # validate watchpoint id watch_point_id = filter_condition.pop('watch_point_id', 0) watchpoint_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT) watchpoint_stream.validate_watchpoint_id(watch_point_id) # validate and update graph name graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) graph_name = graph_stream.validate_graph_name( filter_condition.get('graph_name')) filter_condition['graph_name'] = graph_name # get searched graph graph = graph_stream.search_nodes(filter_condition) # add watched label to graph watchpoint_stream.set_watch_nodes(graph, graph_stream, watch_point_id, graph_name) return graph def tensor_comparisons(self, name, shape, detail='data', tolerance='0'): """ Get tensor comparisons data for given name, detail, shape and tolerance. Args: name (str): The name of tensor for ui. detail (str): Specify which data to query. Current available value is 'data' which means concrete tensor data. Histogram or unique count can be supported in the future. shape (str): Specify concrete dimensions of shape. tolerance (str): Specify tolerance of difference between current step tensor and previous step tensor. Default value is 0. Raises: DebuggerParamValueError, If node type is not parameter or value of detail is not support. DebuggerCompareTensorError, If MindSpore is not in waiting state. Returns: dict, the retrieved data. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to compare tensors as the MindSpore is not in waiting state." ) raise DebuggerCompareTensorError( "Failed to compare tensors as the MindSpore is not in waiting state." ) self.validate_tensor_param(name, detail) # Limit to query max two dimensions for tensor in table view. parsed_shape = TensorUtils.parse_shape(shape, limit=MAX_DIMENSIONS_FOR_TENSOR) node_type, tensor_name = self._get_tensor_name_and_type_by_ui_name( name) tolerance = to_float(tolerance, 'tolerance') tensor_stream = self.cache_store.get_stream_handler(Streams.TENSOR) if node_type == NodeTypeEnum.PARAMETER.value: reply = tensor_stream.get_tensors_diff(tensor_name, parsed_shape, tolerance) else: raise DebuggerParamValueError( "The node type must be parameter, but got {}.".format( node_type)) return reply def retrieve(self, mode, filter_condition=None): """ Retrieve data according to mode and params. Args: mode (str): The type of info message. filter_condition (dict): The filter condition. Returns: dict, the retrieved data. """ log.info( "receive retrieve request for mode:%s\n, filter_condition: %s", mode, filter_condition) mode_mapping = { 'all': self._retrieve_all, 'node': self._retrieve_node, 'watchpoint': self._retrieve_watchpoint, } # validate param <mode> if mode not in mode_mapping.keys(): log.error( "Invalid param <mode>. <mode> should be in ['all', 'node', 'watchpoint', " "'watchpoint_hit'], but got %s.", mode_mapping) raise DebuggerParamValueError("Invalid mode.") # validate backend status metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.state == ServerStatus.PENDING.value: log.info("The backend is in pending status.") return metadata_stream.get() filter_condition = {} if filter_condition is None else filter_condition reply = mode_mapping[mode](filter_condition) return reply def _retrieve_all(self, filter_condition=None): """Retrieve metadata, root graph and watchpoint list.""" if filter_condition: log.error("No filter condition required for retrieve all request.") raise DebuggerParamTypeError("filter_condition should be empty.") self.cache_store.clean_data() log.info("Clean data queue cache when retrieve all request.") result = {} for stream in [Streams.METADATA, Streams.GRAPH]: sub_res = self.cache_store.get_stream_handler(stream).get() result.update(sub_res) sub_res = self._hide_parameters_for_ui() result.update(sub_res) return result def _retrieve_node(self, filter_condition): """ Retrieve node info. Args: filter_condition (dict): Filter condition. - name (str): The name of single node. - graph_name (str): The relative graph_name of the node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. - watch_point_id (int): The id of watchpoint. Returns: dict, reply with graph. """ log.debug("Retrieve node %s.", filter_condition) # validate node name node_name = filter_condition.get('name') graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) graph_name = graph_stream.validate_graph_name( filter_condition.get('graph_name')) if node_name: # validate node name graph_stream.get_node_type(node_name, graph_name) filter_condition['single_node'] = bool( filter_condition.get('single_node')) filter_condition['graph_name'] = graph_name reply = self._get_nodes_info(filter_condition) return reply def _get_nodes_info(self, filter_condition): """ Get nodes info. Args: filter_condition (dict): The filter condition. - name (str): The node name. - graph_name (str): The relative graph_name of the node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. - watch_point_id (int): The id of watchpoint. Returns: dict, reply with graph. """ # validate watch_point_id watch_point_id = filter_condition.get('watch_point_id', 0) watchpoint_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT) watchpoint_stream.validate_watchpoint_id(watch_point_id) # get graph graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) reply = graph_stream.get(filter_condition) graph = reply.get('graph') # add watched label to graph watchpoint_stream.set_watch_nodes(graph, graph_stream, watch_point_id, filter_condition.get('graph_name')) return reply def retrieve_tensor_history(self, node_name, graph_name=None): """ Retrieve tensor history for leaf node. Args: node_name (str): The name of leaf node. graph_name (str): The graph name. Default: None. Returns: dict, the tensor history and metadata. """ log.info("Retrieve tensor history for node: %s.", node_name) metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.state == ServerStatus.PENDING.value: log.info("The backend is in pending status.") return metadata_stream.get(['state', 'step']) res = self._get_tensor_history(node_name, graph_name) return res def _get_tensor_history(self, node_name, graph_name=None): """ Get tensor history for single node. Args: node_name (str): The name of leaf node. graph_name (str): The graph name. Default: None. Returns: dict, the tensor history and metadata. """ # get basic tensor history graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) tensor_history = graph_stream.get_tensor_history(node_name, graph_name) # add tensor value for tensor history self._add_tensor_value_for_tensor_history(tensor_history, node_name, graph_name) # add hit label for tensor history watchpoint_hit_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT_HIT) watchpoint_hit_stream.update_tensor_history(tensor_history) # add metadata metadata = self.cache_store.get_stream_handler(Streams.METADATA).get( ['state', 'step']) tensor_history.update(metadata) return tensor_history def _add_tensor_value_for_tensor_history(self, tensor_history, node_name, graph_name): """ Add tensor value for_tensor_history and send ViewCMD if tensor value missed. Args: tensor_history (list[dict]): A list of tensor info, including name and type. node_name (str): The UI node name. graph_name (str): The graph name. Default: None. Returns: dict, the tensor info. """ tensor_stream = self.cache_store.get_stream_handler(Streams.TENSOR) missed_tensors = tensor_stream.update_tensor_history(tensor_history) if missed_tensors: view_cmd = create_view_event_from_tensor_basic_info(missed_tensors) self.cache_store.put_command({ 'view_cmd': view_cmd, 'node_name': node_name, 'graph_name': graph_name }) log.debug("Send view cmd.") def retrieve_tensor_value(self, name, detail, shape, graph_name=None, prev=False): """Retrieve the tensor value.""" log.info("Retrieve tensor value: name: %s, detail: %s, shape: %s", name, detail, shape) self.validate_tensor_param(name, detail) # Limit to query max two dimensions for tensor in table view. parsed_shape = TensorUtils.parse_shape(shape, limit=MAX_DIMENSIONS_FOR_TENSOR) node_type, tensor_name = self._get_tensor_name_and_type_by_ui_name( name, graph_name) reply = self.cache_store.get_stream_handler(Streams.TENSOR).get({ 'name': tensor_name, 'node_type': node_type, 'shape': parsed_shape, 'prev': prev }) reply['tensor_value']['name'] = name return reply def _get_tensor_name_and_type_by_ui_name(self, name, graph_name=None): """ Get inner tensor name and type by UI name. Args: name (str): Node name shown in UI. graph_name (Union[str, None]): The graph name, default is: None. Returns: str, full name of tensor. str, node type of tensor. """ node_name, slot = name.rsplit(':', 1) graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) graph_name = graph_name if graph_name else graph_stream.get_graph_id_by_name( node_name) node_type = graph_stream.get_node_type(node_name, graph_name) full_name = graph_stream.get_full_name(node_name, graph_name) tensor_name = full_name + ':' + slot return node_type, tensor_name @staticmethod def validate_tensor_param(name, detail): """Validate params for retrieve tensor request.""" # validate name if not isinstance(name, str) or ':' not in name: log.error("Invalid tensor name. Received: %s", name) raise DebuggerParamValueError("Invalid tensor name.") # validate data if detail != 'data': log.error("Invalid detail value. Received: %s", detail) raise DebuggerParamValueError("Invalid detail value.") def _retrieve_watchpoint(self, filter_condition): """ Retrieve watchpoint. Args: filter_condition (dict): Filter condition. - watch_point_id (int): The id of watchpoint. If not given, return all watchpoints. - name (str): The name of single node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. Returns: dict, watch point list or relative graph. """ watchpoint_id = filter_condition.get('watch_point_id', 0) if not watchpoint_id: reply = self._hide_parameters_for_ui() log.debug("Get condition of watchpoints.") else: reply = self._retrieve_node(filter_condition) log.debug("Get graph of %d-th watchpoint.", watchpoint_id) return reply def search_watchpoint_hits(self, group_condition): """ Retrieve watchpoint hit. Args: group_condition (dict): Filter condition. - limit (int): The limit of each page. - offset (int): The offset of current page. - node_name (str): The retrieved node name. - graph_name (str): The retrieved graph name. Returns: dict, watch point list or relative graph. """ if not isinstance(group_condition, dict): log.error( "Group condition for watchpoint-hits request should be a dict") raise DebuggerParamTypeError( "Group condition for watchpoint-hits request should be a dict") metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.state == ServerStatus.PENDING.value: log.info("The backend is in pending status.") return metadata_stream.get() reply = self.cache_store.get_stream_handler( Streams.WATCHPOINT_HIT).group_by(group_condition) reply['outdated'] = self.cache_store.get_stream_handler( Streams.WATCHPOINT).is_recheckable() return reply def create_watchpoint(self, params): """ Create watchpoint. Args: params (dict): Params for create watchpoint. - watch_condition (dict): The watch condition. The format is like: { "id": "tensor_too_large", "params": [ { "name": "abs_mean_gt", "value": 1.1 } ] } - id (str): Id of condition. - params (list[dict]): The list of param for this condition. - watch_nodes (list[str]): The list of node names. - watch_point_id (int): The id of watchpoint. - search_pattern (dict): The search pattern. - graph_name (str): The relative graph_name of the watched node. Returns: dict, the id of new watchpoint and metadata info. """ watchpoint_opt = WatchpointOperator(self.cache_store, self.condition_mgr) return watchpoint_opt.create_watchpoint(params) def update_watchpoint(self, params): """ Update watchpoint. Args: params (dict): Params for update watchpoint. - watch_point_id (int): The id of watchpoint. - watch_nodes (list[str]): The list of node names. - mode (int): The update operator on nodes. 0 for remove nodes from watch nodes. 1 for add nodes to watch nodes. - search_pattern (dict): The search pattern. - graph_name (str): The relative graph_name of the watched node. Returns: dict, the metadata info. """ watchpoint_opt = WatchpointOperator(self.cache_store, self.condition_mgr) return watchpoint_opt.update_watchpoint(params) def delete_watchpoint(self, watch_point_id=None): """ Delete watchpoint. Args: watch_point_id (Union[None, int]): The id of watchpoint. If None, delete all watchpoints. Default: None. Returns: dict, the metadata info. """ watchpoint_opt = WatchpointOperator(self.cache_store, self.condition_mgr) return watchpoint_opt.delete_watchpoint(watch_point_id=watch_point_id) @try_except def control(self, params=None): """ Control the training process. Args: params (dict): The control params. - mode (str): Acceptable control command, including `continue`, `pause` and `terminate`. - level (str): The control granularity, `node` level or `step` level. Default: `step`. - steps (int): Specify the steps that training should run. Used when `level` is `step`. - name (str): Specify the name of the node. Used when `level` is `node`. - graph_name (str): The graph name. Returns: dict, the response. """ log.info("Receive control request: %s.", params) mode = params.pop('mode', None) if params else None training_controller = TrainingControlOperator(self.cache_store) training_controller.validate_mode(mode) return training_controller.control(mode, params) def retrieve_node_by_bfs(self, node_name, graph_name=None, ascend=False): """ Get the graph of the next node according to node_name. Args: node_name (str): The name of current chosen leaf node. graph_name (str): The graph name. ascend (bool): If True, traverse the input nodes; If False, traverse the output nodes. Default is True. Returns: dict, the next node information. """ log.info("Retrieve node <%s> by bfs, `ascend` is :%s", node_name, ascend) reply = {} graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) graph_name = graph_stream.validate_graph_name(graph_name) next_node_name = graph_stream.get_node_by_bfs_order(node_name, ascend) # no next node if next_node_name is None: return reply # add graph and tensor history for next node filter_condition = { 'name': next_node_name, 'graph_name': graph_name, 'single_node': True } search_graph = self._get_nodes_info(filter_condition) reply = {'name': next_node_name} reply.update(search_graph) return reply @try_except def recheck(self): """ Recheck all watchpoints. Returns: dict, metadata info. """ return TrainingControlOperator(self.cache_store).recheck() def retrieve_tensor_graph(self, tensor_name, graph_name): """ Retrieve tensor graph. Args: tensor_name (str): The tensor name from UI. graph_name (str): The graph name. Returns: dict, tensor graph object. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to get tensor graph the MindSpore is not in waiting state." ) raise DebuggerTensorGraphError log.info("Retrieve tensor graph for %s from %s", tensor_name, graph_name) tensor_graph_ops = TensorDetailInfo(self.cache_store).get_tensor_graph( tensor_name, graph_name) return tensor_graph_ops def retrieve_tensor_hits(self, tensor_name, graph_name): """ Retrieve tensor hit information. Args: tensor_name (str): The tensor name from UI. graph_name (str): The graph name. Returns: dict, tensor hit info. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to get tensor hits as the MindSpore is not in waiting state." ) raise DebuggerTensorHitError log.info("Retrieve tensor hits for %s from %s", tensor_name, graph_name) watch_points = TensorDetailInfo( self.cache_store).get_tensor_watch_points(tensor_name, graph_name) return {'watch_points': watch_points} def _hide_parameters_for_ui(self): """ Hide some parameters on ui. Returns: dict, watch point list. """ reply = self.cache_store.get_stream_handler(Streams.WATCHPOINT).get() watch_points = reply.get('watch_points') for i, watch_point in enumerate(watch_points): watch_condition = watch_point.get('watch_condition') parameters = watch_condition.get('params') watch_condition_id = watch_condition.get('id') mgr_condition = self.condition_mgr.get_condition( watch_condition_id) ui_watch_condition = [] for param in parameters: parameter_definition = mgr_condition.get_parameter_definition( param['name']) if not parameter_definition.visible_on_ui: continue ui_watch_condition.append(param) reply['watch_points'][i]['watch_condition'][ 'params'] = ui_watch_condition return reply
def __init__(self, context): self.condition_mgr = ConditionMgr() self.cache_store = DebuggerCache() self.context = context self.back_server = DebuggerServerFactory().get_debugger_server( self.cache_store, context)
class DebuggerSession: """The server manager of debugger.""" def __init__(self, context): self.condition_mgr = ConditionMgr() self.cache_store = DebuggerCache() self.context = context self.back_server = DebuggerServerFactory().get_debugger_server( self.cache_store, context) @property def train_job(self): """The property of train job.""" return self.context.train_job def get_condition_collections(self, train_id=""): """Get default condition_collections""" metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) condition_context = ConditionContext(metadata_stream.backend, metadata_stream.step) log.debug("Train_id: %s, backend: %s", train_id, condition_context.backend) return self.condition_mgr.get_all_collections(condition_context) def set_recommended_watch_points(self, set_recommended, train_id=""): """Set recommended watch points.""" if not isinstance(set_recommended, bool): log.error("Bool param should be given for set_recommended") raise DebuggerParamValueError("Bool param should be given.") metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.recommendation_confirmed: log.error("User has confirmed setting recommended watchpoints") raise DebuggerSetRecommendWatchpointsError() metadata_stream.recommendation_confirmed = True condition_context = ConditionContext(metadata_stream.backend, metadata_stream.step) log.debug("Train_id: %s, backend: %s", train_id, condition_context.backend) res = metadata_stream.get(['state', 'enable_recheck']) if set_recommended: res['id'] = self._add_recommended_watchpoints(condition_context) return res def _add_recommended_watchpoints(self, condition_context): """Add predefined watchpoints.""" log.debug("Add predefined watchpoints.") multi_card_graph_stream = self.cache_store.get_stream_handler( Streams.GRAPH) watchpoints = recommend_watchpoints(self.condition_mgr, multi_card_graph_stream, condition_context) watch_point_stream_handler = self.cache_store.get_stream_handler( Streams.WATCHPOINT) device_stream = self.cache_store.get_stream_handler(Streams.DEVICE) watch_points_ids = [] for watchpoint in watchpoints: watch_points_id = watch_point_stream_handler.create_watchpoint( watch_condition=watchpoint.get_watch_condition_dict(), watch_nodes=watchpoint.watch_nodes, name=watchpoint.name, condition_mgr=self.condition_mgr, device_amount=device_stream.device_amount) watch_points_ids.append(watch_points_id) return watch_points_ids def start(self): """Start server.""" self.back_server.start() log.info("Start debugger backend server.") def _stop_handler(self, signum, frame): """Register stop server handler.""" self.stop() log.debug("Deal with stop signal: %s, %s", signum, frame) def stop(self): """Stop debugger server.""" log.info("Send terminate info to client.") self.control({'mode': 'terminate'}) self.back_server.stop() log.info("Stop debugger server.") def poll_data(self, pos): """ Get the pos-th data from DebuggerCache. Args: pos (int): The index of data. Returns: dict, the data to be updated. """ if not isinstance(pos, str): log.error("Pos should be string. Received: %s", pos) raise DebuggerParamValueError("Pos should be string.") reply = self.cache_store.get_data(pos) return reply def search(self, filter_condition): """ Search for single node in graph. Args: filter_condition (dict): Filter condition. - name (str): The name pattern. - graph_name (str): The graph name. - watch_point_id (int): The id of watchpoint. Default: 0. - node_category (str): The node_category. Default: None - rank_id (int): The id of rank. Default: 0. - stack_pattern (str): The pattern of stack info. Default: None. Returns: dict, the searched nodes. """ log.info("receive search request with filter_condition: %s", filter_condition) # validate watchpoint id watch_point_id = filter_condition.pop('watch_point_id', 0) rank_id = filter_condition.pop('rank_id', 0) watchpoint_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT) watchpoint_stream.validate_watchpoint_id(watch_point_id) # validate and update graph name graph_stream = self.cache_store.get_stream_handler( Streams.GRAPH).get_graph_handler_by_rank_id(rank_id) graph_name = graph_stream.validate_graph_name( filter_condition.get('graph_name')) filter_condition['graph_name'] = graph_name # get searched graph graph = graph_stream.search_nodes(filter_condition) # add watched label to graph watchpoint_stream.set_watch_nodes(graph, graph_stream, watch_point_id, graph_name, rank_id) return graph def tensor_comparisons(self, name, shape, detail='data', tolerance='0', rank_id=0, graph_name=None): """ Get tensor comparisons data for given name, detail, shape and tolerance. Args: name (str): The name of tensor for ui. shape (str): Specify concrete dimensions of shape. detail (str): Specify which data to query. Current available value is 'data' which means concrete tensor data. Histogram or unique count can be supported in the future. rank_id (int): The id of rank. Default: 0. tolerance (str): Specify tolerance of difference between current step tensor and previous step tensor. Default value is 0. graph_name (str): The graph name. Default: None. Returns: dict, the retrieved data. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to compare tensors as the MindSpore is not in waiting state." ) raise DebuggerCompareTensorError( "Failed to compare tensors as the MindSpore is not in waiting state." ) self.validate_tensor_param(name, detail) # Limit to query max two dimensions for tensor in table view. parsed_shape = TensorUtils.parse_shape(shape, limit=MAX_DIMENSIONS_FOR_TENSOR) node_type, tensor_name, graph_name = self._get_tensor_name_and_type_by_ui_name( name, graph_name, rank_id) tolerance = to_float(tolerance, 'tolerance') tensor_stream = self.cache_store.get_stream_handler( Streams.TENSOR).get_tensor_handler_by_rank_id(rank_id) cur_step = self.cache_store.get_stream_handler(Streams.METADATA).step if node_type == NodeTypeEnum.PARAMETER.value: reply = tensor_stream.get_tensors_diff(tensor_name, parsed_shape, tolerance, cur_step) else: raise DebuggerParamValueError( "The node type must be parameter, but got {}.".format( node_type)) if reply.pop('view_cmd', False): self._send_view_cmd(name, graph_name, rank_id, tensor_name, node_type) return reply def retrieve(self, mode, filter_condition=None): """ Retrieve data according to mode and params. Args: mode (str): The type of info message. filter_condition (dict): The filter condition. Returns: dict, the retrieved data. """ log.info( "receive retrieve request for mode:%s\n, filter_condition: %s", mode, filter_condition) mode_mapping = { 'all': self._retrieve_all, 'node': self._retrieve_node, 'watchpoint': self._retrieve_watchpoint, } # validate param <mode> if mode not in mode_mapping.keys(): log.error( "Invalid param <mode>. <mode> should be in ['all', 'node', 'watchpoint', " "'watchpoint_hit'], but got %s.", mode_mapping) raise DebuggerParamValueError("Invalid mode.") # validate backend status metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.state == ServerStatus.PENDING.value: log.info("The backend is in pending status.") return metadata_stream.get() filter_condition = {} if filter_condition is None else filter_condition reply = mode_mapping[mode](filter_condition) return reply def _retrieve_all(self, filter_condition=None): """Retrieve metadata, root graph and watchpoint list.""" if filter_condition: log.error("No filter condition required for retrieve all request.") raise DebuggerParamTypeError("filter_condition should be empty.") self.cache_store.clean_data() log.info("Clean data queue cache when retrieve all request.") result = {} for stream in [Streams.METADATA, Streams.GRAPH, Streams.DEVICE]: sub_res = self.cache_store.get_stream_handler(stream).get() result.update(sub_res) devices = result['devices'] if not devices: graph = result['graph'] metadata = result['metadata'] device = { 'rank_id': 0, 'server_ip': metadata.get('ip', 'localhost'), 'device_id': metadata.get('device_name', ''), 'graph_names': graph.get('graph_names', []) } devices.append(device) sub_res = self._hide_parameters_for_ui() result.update(sub_res) return result def _retrieve_node(self, filter_condition): """ Retrieve node info. Args: filter_condition (dict): Filter condition. - name (str): The name of single node. - graph_name (str): The relative graph_name of the node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. - watch_point_id (int): The id of watchpoint. Returns: dict, reply with graph. """ log.debug("Retrieve node %s.", filter_condition) # validate node name node_name = filter_condition.get('name') rank_id = filter_condition.get('rank_id', 0) graph_stream = self.cache_store.get_stream_handler( Streams.GRAPH).get_graph_handler_by_rank_id(rank_id) graph_name = graph_stream.validate_graph_name( filter_condition.get('graph_name')) if node_name: # validate node name graph_stream.get_node_type(node_name, graph_name) filter_condition['single_node'] = bool( filter_condition.get('single_node')) filter_condition['graph_name'] = graph_name reply = self._get_nodes_info(filter_condition) return reply def _get_nodes_info(self, filter_condition): """ Get nodes info. Args: filter_condition (dict): The filter condition. - name (str): The node name. - graph_name (str): The relative graph_name of the node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. - watch_point_id (int): The id of watchpoint. Returns: dict, reply with graph. """ # validate watch_point_id rank_id = filter_condition.get('rank_id', 0) watch_point_id = filter_condition.get('watch_point_id', 0) watchpoint_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT) watchpoint_stream.validate_watchpoint_id(watch_point_id) # get graph graph_stream = self.cache_store.get_stream_handler( Streams.GRAPH).get_graph_handler_by_rank_id(rank_id) reply = graph_stream.get(filter_condition) graph = reply.get('graph') # add watched label to graph watchpoint_stream.set_watch_nodes(graph, graph_stream, watch_point_id, filter_condition.get('graph_name'), rank_id) return reply def retrieve_tensor_history(self, node_name, graph_name=None, rank_id=0): """ Retrieve tensor history for leaf node. Args: node_name (str): The name of leaf node. graph_name (str): The graph name. Default: None. rank_id (int): The id of rank. Default: 0. Returns: dict, the tensor history and metadata. """ log.info("Retrieve tensor history for node: %s.", node_name) metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.state == ServerStatus.PENDING.value: log.info("The backend is in pending status.") return metadata_stream.get(['state', 'step']) res = self._get_tensor_history(node_name, graph_name, rank_id) return res def _get_tensor_history(self, node_name, graph_name=None, rank_id=0): """ Get tensor history for single node. Args: node_name (str): The name of leaf node. graph_name (str): The graph name. Default: None. rank_id (int): The id of rank. Default: 0. Returns: dict, the tensor history and metadata. """ # get basic tensor history graph_stream = self.cache_store.get_stream_handler( Streams.GRAPH).get_graph_handler_by_rank_id(rank_id) tensor_history = graph_stream.get_tensor_history(node_name, graph_name) # add tensor value for tensor history self._add_tensor_value_for_tensor_history(tensor_history, node_name, graph_name, rank_id) # add hit label for tensor history self.cache_store.get_stream_handler( Streams.WATCHPOINT_HIT).update_tensor_history( tensor_history, rank_id) # add metadata metadata = self.cache_store.get_stream_handler(Streams.METADATA).get( ['step']) tensor_history.update(metadata) return tensor_history def _add_tensor_value_for_tensor_history(self, tensor_history, node_name, graph_name, rank_id): """ Add tensor value for_tensor_history and send ViewCMD if tensor value missed. Args: tensor_history (list[dict]): A list of tensor info, including name and type. node_name (str): The UI node name. graph_name (str): The graph name. Default: None. rank_id (int): The id of rank. Default: 0. Returns: dict, the tensor info. """ tensor_stream = self.cache_store.get_stream_handler( Streams.TENSOR).get_tensor_handler_by_rank_id(rank_id) cur_step = self.cache_store.get_stream_handler(Streams.METADATA).step missed_tensors = tensor_stream.update_tensor_history( tensor_history, cur_step) if missed_tensors: view_cmd = create_view_event_from_tensor_basic_info(missed_tensors) self.cache_store.put_command({ 'view_cmd': view_cmd, 'node_name': node_name, 'graph_name': graph_name, 'rank_id': rank_id, 'stats': True }) log.debug("Send view cmd.") def retrieve_tensor_value(self, name, detail, shape, graph_name=None, prev=False, rank_id=0): """Retrieve the tensor value.""" log.info("Retrieve tensor value: name: %s, detail: %s, shape: %s", name, detail, shape) self.validate_tensor_param(name, detail) # Limit to query max two dimensions for tensor in table view. parsed_shape = TensorUtils.parse_shape(shape, limit=MAX_DIMENSIONS_FOR_TENSOR) node_type, tensor_name, graph_name = self._get_tensor_name_and_type_by_ui_name( name, graph_name, rank_id) reply = self.cache_store.get_stream_handler(Streams.TENSOR).get( { 'name': tensor_name, 'node_type': node_type, 'shape': parsed_shape, 'prev': prev }, rank_id) reply['tensor_value']['name'] = name if reply.pop('view_cmd', False): self._send_view_cmd(name, graph_name, rank_id, tensor_name, node_type) return reply def _send_view_cmd(self, name, graph_name, rank_id, tensor_name, node_type): """Send view command.""" tensor_basic_info = self.cache_store.get_stream_handler( Streams.TENSOR).get_tensor_handler_by_rank_id( rank_id).get_missing_tensor_info(tensor_name, node_type, check_cache=True) if tensor_basic_info: view_cmd = create_view_event_from_tensor_basic_info( tensor_basic_info) self.cache_store.put_command({ 'view_cmd': view_cmd, 'tensor_name': name, 'graph_name': graph_name, 'rank_id': rank_id }) log.debug("Send view cmd.") def load(self, name, prev, graph_name=None, rank_id=0): """ Load the tensor value. Args: name (str): Node name shown in UI. prev (bool): The previous step or current step. graph_name (Union[str, None]): The graph name, default is: None. rank_id (int): The id of rank. Default: 0. """ if not isinstance(name, str) or ':' not in name: log.error("Invalid tensor name. Received: %s", name) raise DebuggerParamValueError("Invalid tensor name.") node_type, tensor_name, graph_name = self._get_tensor_name_and_type_by_ui_name( name, graph_name, rank_id) log.info("Load the tensor value: name: %s", tensor_name) reply = self.cache_store.get_stream_handler( Streams.TENSOR).get_tensor_handler_by_rank_id(rank_id).load( tensor_name=tensor_name, graph_name=graph_name, prev=prev, node_type=node_type) if not reply.get('in_memory'): prev_step = 'prev' if prev else '' tensor_basic_info = self.cache_store.get_stream_handler(Streams.TENSOR).\ tensor_basic_info(tensor_name, node_type, prev_step) view_cmd = create_view_event_from_tensor_basic_info( [tensor_basic_info]) self.cache_store.put_command({ 'view_cmd': view_cmd, 'node_name': name, 'graph_name': graph_name, 'rank_id': rank_id, 'load': { 'tensor_name': tensor_name, 'prev': prev, 'node_type': node_type } }) log.debug("Send view cmd.") else: metadata = self.cache_store.get_stream_handler( Streams.METADATA).get(['step', 'state']) ret = {'tensor_file': True, 'node_name': name} ret.update(metadata) self.cache_store.put_data(ret) reply = {'node_name': name} return reply def download(self, name, prev, graph_name=None, rank_id=0): """ Download the tensor value. Args: name (str): Node name shown in UI. prev (bool): The previous step or current step. graph_name (Union[str, None]): The graph name, default is: None. rank_id (int): The id of rank. Default: 0. Returns: str, the file path. str, the file name. """ if not isinstance(name, str) or ':' not in name: log.error("Invalid tensor name. Received: %s", name) raise DebuggerParamValueError("Invalid tensor name.") _, tensor_name, graph_name = self._get_tensor_name_and_type_by_ui_name( name, graph_name, rank_id) log.info("Download the tensor value: name: %s", tensor_name) tensor_stream = self.cache_store.get_stream_handler( Streams.TENSOR).get_tensor_handler_by_rank_id(rank_id) step = tensor_stream.cur_step if prev: step -= 1 tensor_info = { "tensor_name": tensor_name, "graph_name": graph_name, "step": step, "rank_id": rank_id } return tensor_stream.download_mgr.get(**tensor_info) def _get_tensor_name_and_type_by_ui_name(self, name, graph_name=None, rank_id=0): """ Get inner tensor name and type by UI name. Args: name (str): Node name shown in UI. graph_name (Union[str, None]): The graph name, default is: None. rank_id (int): The id of rank. Default: 0. Returns: str, full name of tensor. str, node type of tensor. """ node_name, slot = name.rsplit(':', 1) graph_stream = self.cache_store.get_stream_handler( Streams.GRAPH).get_graph_handler_by_rank_id(rank_id) graph_name = graph_name if graph_name else graph_stream.get_graph_id_by_name( node_name) graph_name = graph_stream.validate_graph_name(graph_name) node_type = graph_stream.get_node_type(node_name, graph_name) full_name = graph_stream.get_full_name(node_name, graph_name) tensor_name = full_name + ':' + slot return node_type, tensor_name, graph_name @staticmethod def validate_tensor_param(name, detail): """Validate params for retrieve tensor request.""" # validate name if not isinstance(name, str) or ':' not in name: log.error("Invalid tensor name. Received: %s", name) raise DebuggerParamValueError("Invalid tensor name.") # validate data if detail != 'data': log.error("Invalid detail value. Received: %s", detail) raise DebuggerParamValueError("Invalid detail value.") def _retrieve_watchpoint(self, filter_condition): """ Retrieve watchpoint. Args: filter_condition (dict): Filter condition. - watch_point_id (int): The id of watchpoint. If not given, return all watchpoints. - name (str): The name of single node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. Returns: dict, watch point list or relative graph. """ watchpoint_id = filter_condition.get('watch_point_id', 0) if not watchpoint_id: reply = self._hide_parameters_for_ui() log.debug("Get condition of watchpoints.") else: reply = self._retrieve_node(filter_condition) log.debug("Get graph of %d-th watchpoint.", watchpoint_id) return reply def search_watchpoint_hits(self, group_condition): """ Retrieve watchpoint hit. Args: group_condition (dict): Filter condition. - limit (int): The limit of each page. - offset (int): The offset of current page. - node_name (str): The retrieved node name. - graph_name (str): The retrieved graph name. - rank_id (int): The rank id. Returns: dict, watch point list or relative graph. """ if not isinstance(group_condition, dict): log.error( "Group condition for watchpoint-hits request should be a dict") raise DebuggerParamTypeError( "Group condition for watchpoint-hits request should be a dict") metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.state == ServerStatus.PENDING.value: log.info("The backend is in pending status.") return metadata_stream.get() rank_id = group_condition.pop('rank_id', 0) reply = {} multi_watchpoint_hit_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT_HIT) if multi_watchpoint_hit_stream.check_rank_id(rank_id): watchpoint_hit_stream = multi_watchpoint_hit_stream.get_hit_handler_by_rank_id( rank_id) reply = watchpoint_hit_stream.group_by(group_condition) reply['outdated'] = self.cache_store.get_stream_handler( Streams.WATCHPOINT).is_recheckable() return reply def create_watchpoint(self, params): """ Create watchpoint. Args: params (dict): Params for create watchpoint. - watch_condition (dict): The watch condition. The format is like: { "id": "tensor_too_large", "params": [ { "name": "abs_mean_gt", "value": 1.1 } ] } - id (str): Id of condition. - params (list[dict]): The list of param for this condition. - watch_nodes (list[str]): The list of node names. - watch_point_id (int): The id of watchpoint. - search_pattern (dict): The search pattern. - graph_name (str): The relative graph_name of the watched node. Returns: dict, the id of new watchpoint and metadata info. """ watchpoint_opt = WatchpointOperator(self.cache_store, self.condition_mgr) return watchpoint_opt.create_watchpoint(params) def update_watchpoint(self, params): """ Update watchpoint. Args: params (dict): Params for update watchpoint. - watch_point_id (int): The id of watchpoint. - watch_nodes (list[str]): The list of node names. - mode (int): The update operator on nodes. 0 for remove nodes from watch nodes. 1 for add nodes to watch nodes. - search_pattern (dict): The search pattern. - graph_name (str): The relative graph_name of the watched node. Returns: dict, the metadata info. """ watchpoint_opt = WatchpointOperator(self.cache_store, self.condition_mgr) return watchpoint_opt.update_watchpoint(params) def delete_watchpoint(self, watch_point_id=None): """ Delete watchpoint. Args: watch_point_id (Union[None, int]): The id of watchpoint. If None, delete all watchpoints. Default: None. Returns: dict, the metadata info. """ watchpoint_opt = WatchpointOperator(self.cache_store, self.condition_mgr) return watchpoint_opt.delete_watchpoint(watch_point_id=watch_point_id) @try_except def control(self, params=None): """ Control the training process. Args: params (dict): The control params. - mode (str): Acceptable control command, including `continue`, `pause` and `terminate`. - level (str): The control granularity, `node` level or `step` level. Default: `step`. - steps (int): Specify the steps that training should run. Used when `level` is `step`. - name (str): Specify the name of the node. Used when `level` is `node`. - graph_name (str): The graph name. Returns: dict, the response. """ log.info("Receive control request: %s.", params) mode = params.pop('mode', None) if params else None training_controller = TrainingControlOperator(self.cache_store) training_controller.validate_mode(mode) return training_controller.control(mode, params) @try_except def recheck(self): """ Recheck all watchpoints. Returns: dict, metadata info. """ return TrainingControlOperator(self.cache_store).recheck() def retrieve_tensor_graph(self, tensor_name, graph_name, rank_id=0): """ Retrieve tensor graph. Args: tensor_name (str): The tensor name from UI. graph_name (str): The graph name. rank_id (int): The id of rank. Default: 0. Returns: dict, tensor graph object. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to get tensor graph the MindSpore is not in waiting state." ) raise DebuggerTensorGraphError log.info("Retrieve tensor graph for %s from %s", tensor_name, graph_name) tensor_graph_ops = TensorDetailInfo(self.cache_store).get_tensor_graph( tensor_name, graph_name, rank_id) return tensor_graph_ops def retrieve_tensor_hits(self, tensor_name, graph_name, rank_id=0): """ Retrieve tensor hit information. Args: tensor_name (str): The tensor name from UI. graph_name (str): The graph name. rank_id (int): The id of rank. Default: 0. Returns: dict, tensor hit info. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to get tensor hits as the MindSpore is not in waiting state." ) raise DebuggerTensorHitError log.info("Retrieve tensor hits for %s from %s", tensor_name, graph_name) watch_points = TensorDetailInfo( self.cache_store).get_tensor_watch_points(tensor_name, graph_name, rank_id) return {'watch_points': watch_points} def _hide_parameters_for_ui(self): """ Hide some parameters on ui. Returns: dict, watch point list. """ reply = self.cache_store.get_stream_handler(Streams.WATCHPOINT).get() watch_points = reply.get('watch_points') for i, watch_point in enumerate(watch_points): watch_condition = watch_point.get('watch_condition') parameters = watch_condition.get('params') watch_condition_id = watch_condition.get('id') mgr_condition = self.condition_mgr.get_condition( watch_condition_id) ui_watch_condition = [] for param in parameters: parameter_definition = mgr_condition.get_parameter_definition( param['name']) if not parameter_definition.visible_on_ui: continue ui_watch_condition.append(param) reply['watch_points'][i]['watch_condition'][ 'params'] = ui_watch_condition return reply def get_stack_infos(self, filter_condition): """ Get stack infos. Args: filter_condition (dict): The filter condition to query stack infos. - pattern (str): The pattern of stack infos. - limit (int): The size of each page. - offset (int): The index of the page. Valid only when `limit` is not 0. Returns: dict, the stack info object. """ source_handler = self.cache_store.get_stream_handler( Streams.GRAPH).source_handler res = source_handler.get_stack_info_by_offset( pattern=filter_condition.get('pattern'), limit=filter_condition.get('limit', 0), offset=filter_condition.get('offset', 0)) return res
class DebuggerServer: """The server manager of debugger.""" def __init__(self, grpc_port=None): self.grpc_port = grpc_port self.cache_store = DebuggerCache() self.grpc_server = DebuggerGrpcServer(self.cache_store) self.grpc_server_manager = None self.back_server = None self._watch_point_id = 0 def start(self): """Start server.""" grpc_port = self.grpc_port if self.grpc_port else "50051" host = settings.HOST if hasattr(settings, 'HOST') else '[::]' hostname = "{}:{}".format(host, grpc_port) # initialize a grpc server grpc_server_manager = grpc.server( futures.ThreadPoolExecutor(max_workers=10)) grpc_server_base.add_EventListenerServicer_to_server( self.grpc_server, grpc_server_manager) grpc_server_manager.add_insecure_port(hostname) grpc_server_manager.start() my_server_thread = Thread( target=grpc_server_manager.wait_for_termination) # start grpc server my_server_thread.start() self.back_server = my_server_thread self.grpc_server_manager = grpc_server_manager # register stop server handler signal.signal(signal.SIGINT, self._stop_handler) log.info("Start grpc server %s", hostname) def _stop_handler(self, signum, frame): """Register stop server handler.""" self.stop() log.debug("Deal with stop signal: %s, %s", signum, frame) def stop(self): """Stop debugger server.""" self.grpc_server_manager.stop(grace=None) self.back_server.join() log.info("Stop debugger server.") def poll_data(self, pos): """ Get the pos-th data from DebuggerCache. Args: pos (int): The index of data. Returns: dict, the data to be updated. """ if not isinstance(pos, str): log.error("Pos should be string. Received: %s", pos) raise DebuggerParamValueError("Pos should be string.") reply = self.cache_store.get_data(pos) return reply def search(self, name, watch_point_id): """Search for single node in graph.""" log.info("receive search request for node:%s, in watchpoint:%d", name, watch_point_id) graph = self.cache_store.get_stream_handler( Streams.GRAPH).search_nodes(name) self.cache_store.get_stream_handler( Streams.WATCHPOINT).set_watch_nodes(graph, watch_point_id) return graph def tensor_comparisons(self, name, shape, detail='data', tolerance='0'): """ Get tensor comparisons data for given name, detail, shape and tolerance. Args: name (str): The name of tensor for ui. detail (str): Specify which data to query. Current available value is 'data' which means concrete tensor data. Histogram or unique count can be supported in the future. shape (str): Specify concrete dimensions of shape. tolerance (str): Specify tolerance of difference between current step tensor and previous step tensor. Default value is 0. Raises: DebuggerParamValueError, If node type is not parameter or value of detail is not support. DebuggerCompareTensorError, If MindSpore is not in waiting state. Returns: dict, the retrieved data. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to compare tensors as the MindSpore is not in waiting state." ) raise DebuggerCompareTensorError( "Failed to compare tensors as the MindSpore is not in waiting state." ) self.validate_tensor_param(name, detail) parsed_shape = self.parse_shape(shape) node_type, tensor_name = self._get_tensor_name_and_type_by_ui_name( name) tolerance = to_float(tolerance, 'tolerance') tensor_stream = self.cache_store.get_stream_handler(Streams.TENSOR) if detail == 'data': if node_type == NodeTypeEnum.PARAMETER.value: reply = tensor_stream.get_tensors_diff(tensor_name, parsed_shape, tolerance) else: raise DebuggerParamValueError( "The node type must be parameter, but got {}.".format( node_type)) else: raise DebuggerParamValueError( "The value of detail: {} is not support.".format(detail)) return reply def retrieve(self, mode, filter_condition=None): """ Retrieve data according to mode and params. Args: mode (str): The type of info message. filter_condition (dict): The filter condition. Returns: dict, the retrieved data. """ log.info( "receive retrieve request for mode:%s\n, filter_condition: %s", mode, filter_condition) # validate watchpoint_id mode_mapping = { 'all': self._retrieve_all, 'node': self._retrieve_node, 'watchpoint': self._retrieve_watchpoint, 'watchpoint_hit': self._retrieve_watchpoint_hit } # validate param <mode> if mode not in mode_mapping.keys(): log.error( "Invalid param <mode>. <mode> should be in ['all', 'node', 'watchpoint', " "'watchpoint_hit', 'tensor'], but got %s.", mode_mapping) raise DebuggerParamTypeError("Invalid mode.") filter_condition = {} if filter_condition is None else filter_condition reply = mode_mapping[mode](filter_condition) return reply def _retrieve_all(self, filter_condition=None): """Retrieve metadata, root graph and watchpoint list.""" if filter_condition: log.error("No filter condition required for retrieve all request.") raise DebuggerParamTypeError("filter_condition should be empty.") result = {} self._watch_point_id = 0 self.cache_store.clean_data() log.info("Clean data queue cache when retrieve all request.") for stream in [Streams.METADATA, Streams.GRAPH, Streams.WATCHPOINT]: sub_res = self.cache_store.get_stream_handler(stream).get() result.update(sub_res) return result def _retrieve_node(self, filter_condition): """ Retrieve node info. Args: filter_condition (dict): Filter condition. - name (str): The name of single node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. Returns: dict, the node info. """ log.info("Retrieve node %s.", filter_condition) node_name = filter_condition.get('name') if node_name: # validate node name self.cache_store.get_stream_handler( Streams.GRAPH).get_node_type(node_name) filter_condition['single_node'] = bool( filter_condition.get('single_node')) reply = self._get_nodes_info(filter_condition) return reply def _get_nodes_info(self, filter_condition): """ Get nodes info. Args: filter_condition (dict): The filter condition. - name (str): The node name. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. Returns: dict, reply with graph. """ # get graph graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) reply = graph_stream.get(filter_condition) graph = reply.get('graph') # add watched label self.cache_store.get_stream_handler( Streams.WATCHPOINT).set_watch_nodes(graph, self._watch_point_id) return reply def retrieve_tensor_history(self, node_name): """ Retrieve tensor history for leaf node. Args: node_name (str): The name of leaf node. Returns: dict, the tensor history and metadata. """ log.info("Retrieve tensor history for node: %s.", node_name) self._validate_leaf_name(node_name) res = self._get_tensor_history(node_name) return res def _validate_leaf_name(self, node_name): """Validate if the node is a leaf node.""" graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) node_type = graph_stream.get_node_type(node_name) if is_scope_type(node_type): log.error("Scope type node has no tensor history.") raise DebuggerParamValueError("Invalid leaf node name.") def _get_tensor_history(self, node_name): """ Get tensor history for single node. Args: node_name (str): The name of leaf node. Returns: dict, the tensor history and metadata. """ # get basic tensor history graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) tensor_history = graph_stream.get_tensor_history(node_name) # add tensor value for tensor history self._add_tensor_value_for_tensor_history(tensor_history, node_name) # add hit label for tensor history watchpoint_hit_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT_HIT) watchpoint_hit_stream.update_tensor_history(tensor_history) # add metadata metadata = self.cache_store.get_stream_handler(Streams.METADATA).get() tensor_history.update(metadata) return tensor_history def _add_tensor_value_for_tensor_history(self, tensor_history, node_name): """ Add tensor value for_tensor_history and send ViewCMD if tensor value missed. Args: tensor_history (list[dict]): A list of tensor info, including name and type. node_name (str): The UI node name. Returns: dict, the tensor info. """ tensor_stream = self.cache_store.get_stream_handler(Streams.TENSOR) missed_tensors = tensor_stream.update_tensor_history(tensor_history) if missed_tensors: view_cmd = create_view_event_from_tensor_history(missed_tensors) self.cache_store.put_command({ 'view_cmd': view_cmd, 'node_name': node_name }) log.debug("Send view cmd.") def retrieve_tensor_value(self, name, detail, shape): """Retrieve the tensor value.""" log.info("Retrieve tensor value: name: %s, detail: %s, shape: %s", name, detail, shape) self.validate_tensor_param(name, detail) parsed_shape = self.parse_shape(shape) node_type, tensor_name = self._get_tensor_name_and_type_by_ui_name( name) reply = self.cache_store.get_stream_handler(Streams.TENSOR).get({ 'name': tensor_name, 'node_type': node_type, 'shape': parsed_shape }) reply['tensor_value']['name'] = name return reply def _get_tensor_name_and_type_by_ui_name(self, name): """ Get inner tensor name and type by UI name. Args: name (str): Node name shown in UI. Returns: str, full name of tensor. str, node type of tensor. """ node_name, slot = name.rsplit(':', 1) graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) node_type = graph_stream.get_node_type(node_name) full_name = graph_stream.get_full_name(node_name) tensor_name = full_name + ':' + slot return node_type, tensor_name @staticmethod def validate_tensor_param(name, detail): """Validate params for retrieve tensor request.""" # validate name if not isinstance(name, str) or ':' not in name: log.error("Invalid tensor name. Received: %s", name) raise DebuggerParamValueError("Invalid tensor name.") # validate data if detail != 'data': log.error("Invalid detail value. Received: %s", detail) raise DebuggerParamValueError("Invalid detail value.") @staticmethod def parse_shape(shape): """Parse shape.""" if shape is None: return shape if not (isinstance(shape, str) and shape.startswith('[') and shape.endswith(']')): log.error("Invalid shape. Received: %s", shape) raise DebuggerParamValueError("Invalid shape.") shape = shape.strip('[]') if shape.count(':') > 2: log.error("Invalid shape. At most two dimensions are specified.") raise DebuggerParamValueError("Invalid shape.") parsed_shape = tuple( str_to_slice_or_int(dim) for dim in shape.split(',')) if shape else tuple() log.info("Parsed shape: %s from %s", parsed_shape, shape) return parsed_shape def _retrieve_watchpoint(self, filter_condition): """ Retrieve watchpoint. Args: filter_condition (dict): Filter condition. - watch_point_id (int): The id of watchoint. If not given, return all watchpoints. - name (str): The name of single node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. Returns: dict, watch point list or relative graph. """ watchpoint_id = filter_condition.get('watch_point_id') watchpoint_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT) watchpoint_stream.validate_watchpoint_id(watchpoint_id) self._watch_point_id = watchpoint_id if watchpoint_id else 0 if not watchpoint_id: reply = self.cache_store.get_stream_handler( Streams.WATCHPOINT).get() log.debug("Get condition of watchpoints.") else: reply = self._retrieve_node(filter_condition) log.debug("Get graph of %d-th watchpoint.", watchpoint_id) return reply def _retrieve_watchpoint_hit(self, filter_condition): """ Retrieve watchpoint hit. Args: filter_condition (dict): Filter condition. - name (str): The name of single node. - single_node (bool): If False, return the sub-layer of single node. If True, return the node list from root node to single node. Returns: dict, watch point list or relative graph. """ node_name = filter_condition.get('name') # get watchpoint hit list if node_name is None: reply = self.cache_store.get_stream_handler( Streams.WATCHPOINT_HIT).get() return reply self._validate_leaf_name(node_name) # get tensor history reply = self._get_tensor_history(node_name) log.debug("Get tensor history for watchpoint hit node.") # get single graph if filter_condition.get('single_node'): graph = self._get_nodes_info(filter_condition) reply.update(graph) log.debug("Get tensor history for watchpoint hit node.") return reply def create_watchpoint(self, watch_condition, watch_nodes=None, watch_point_id=None): """ Create watchpoint. Args: watch_condition (dict): The watch condition. - condition (str): Accept `INF` or `NAN`. - param (list[float]): Not defined yet. watch_nodes (list[str]): The list of node names. watch_point_id (int): The id of watchpoint. Returns: dict, the id of new watchpoint. """ log.info("Received create watchpoint request. WatchCondition: %s", watch_condition) metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if metadata_stream.state != ServerStatus.WAITING.value: log.error( "Failed to create watchpoint as the MindSpore is not in waiting state." ) raise DebuggerCreateWatchPointError( "Failed to create watchpoint as the MindSpore is not in waiting state." ) if metadata_stream.backend == 'GPU' and watch_condition.get( 'condition') == 'OVERFLOW': log.error("GPU doesn't support OVERFLOW watch condition.") raise DebuggerParamValueError( "GPU doesn't support OVERFLOW watch condition.") watch_nodes = self._get_node_basic_infos(watch_nodes) watch_point_id = self.cache_store.get_stream_handler( Streams.WATCHPOINT).create_watchpoint(watch_condition, watch_nodes, watch_point_id) self._watch_point_id = 0 log.info("Create watchpoint %d", watch_point_id) return {'id': watch_point_id} def update_watchpoint(self, watch_point_id, watch_nodes, mode, name=None): """ Update watchpoint. Args: watch_point_id (int): The id of watchpoint. watch_nodes (list[str]): The list of node names. mode (int): The update operator on nodes. 0 for remove nodes from watch nodes. 1 for add nodes to watch nodes. name (str): The search name. Default: None. Returns: dict, empty response. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to update watchpoint as the MindSpore is not in waiting state." ) raise DebuggerUpdateWatchPointError( "Failed to update watchpoint as the MindSpore is not in waiting state." ) # validate if not watch_nodes or not watch_point_id: log.error("Invalid parameter for update watchpoint.") raise DebuggerParamValueError( "Invalid parameter for update watchpoint.") # update watch node if name is not None: watch_nodes = self._get_watch_nodes_by_search(watch_nodes) elif mode == 1: watch_nodes = self._get_node_basic_infos(watch_nodes) self.cache_store.get_stream_handler( Streams.WATCHPOINT).update_watchpoint(watch_point_id, watch_nodes, mode) self._watch_point_id = watch_point_id log.info("Update watchpoint with id: %d", watch_point_id) return {} def _get_watch_nodes_by_search(self, watch_nodes): """Get watched leaf nodes by search name.""" watched_leaf_nodes = [] graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) for search_name in watch_nodes: search_nodes = graph_stream.get_searched_node_list() search_node_names = [ NodeBasicInfo(name=node.name, full_name=node.full_name, type=node.type) for node in search_nodes if node.name.startswith(search_name) ] watched_leaf_nodes.extend(search_node_names) log.debug("Update nodes: %s", watched_leaf_nodes) return watched_leaf_nodes def delete_watchpoint(self, watch_point_id): """ Delete watchpoint. Args: watch_point_id (int): The id of watchpoint. Returns: dict, empty response. """ if self.cache_store.get_stream_handler( Streams.METADATA).state != ServerStatus.WAITING.value: log.error( "Failed to delete watchpoint as the MindSpore is not in waiting state." ) raise DebuggerDeleteWatchPointError( "Failed to delete watchpoint as the MindSpore is not in waiting state." ) self.cache_store.get_stream_handler( Streams.WATCHPOINT).delete_watchpoint(watch_point_id) self._watch_point_id = 0 log.info("Delete watchpoint with id: %d", watch_point_id) return {} def _get_node_basic_infos(self, node_names): """Get node info according to node names.""" if not node_names: return [] graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) node_infos = [] for node_name in node_names: node_type = graph_stream.get_node_type(node_name) # optimizer later if node_type == NodeTypeEnum.AGGREGATION_SCOPE.value: sub_nodes = graph_stream.get_nodes(node_name) sub_infos = [ NodeBasicInfo(name=node.name, full_name=node.full_name, type=node.type) for node in sub_nodes ] node_infos.extend(sub_infos) continue full_name = graph_stream.get_full_name(node_name) node_infos.append( NodeBasicInfo(name=node_name, full_name=full_name, type=node_type)) return node_infos def control(self, params=None): """ Control the training process. Args: params (dict): The control params. - mode (str): Acceptable control command, including `continue`, `pause` and `terminate`. - level (str): The control granularity, `node` level or `step` level. Default: `step`. - steps (int): Specify the steps that training should run. Used when `level` is `step`. - name (str): Specify the name of the node. Used when `level` is `node`. Returns: dict, the response. """ log.info("Receive control request: %s.", params) mode = params.get('mode') metadata_stream = self.cache_store.get_stream_handler(Streams.METADATA) if mode == 'continue': reply = self._continue(metadata_stream, params) elif mode in ['pause', 'terminate']: mode_mapping = {'pause': self._pause, 'terminate': self._terminate} reply = mode_mapping.get(mode)(metadata_stream) else: log.error("Invalid control mode %s", mode) raise DebuggerParamValueError("Invalid control mode.") return reply def _continue(self, metadata_stream, params): """ Send RunCMD to MindSpore. Args: metadata_stream (MetadataHandler): The metadata_handler params (dict): The control params. """ if metadata_stream.state != ServerStatus.WAITING.value: log.error("MindSpore is not ready to run. Current state is: %s", metadata_stream.state) raise DebuggerContinueError( "MindSpore is not ready to run or is running currently.") metadata_stream.state = ServerStatus.RUNNING.value current_state = ServerStatus.RUNNING.value try: event = self._construct_run_event(params) self._send_watchpoints() self.cache_store.put_command(event) except MindInsightException as err: log.error("Failed to send run event.") log.exception(err) current_state = ServerStatus.WAITING.value metadata_stream.state = current_state raise DebuggerContinueError("Failed to send run command.") else: log.debug("Send the RunCMD to command queue.") return {'metadata': {'state': current_state}} def _validate_node_type(self, node_name): """Check the node type in node control.""" if not node_name: return node_type = self.cache_store.get_stream_handler( Streams.GRAPH).get_node_type(node_name) unsupported_types = [item.value for item in list(NodeTypeEnum)] if node_type in unsupported_types: log.error("Invalid node type. %s", node_name) raise DebuggerParamValueError( f"The type of node {node_name} is unsupported for " "continue to command.") def _construct_run_event(self, params): """ Construct run cmd from input control params. Args: params (dict): The control params. - level (str): The control granularity, `node` level or `step` level. Default: `step`. - steps (int): Specify the steps that training should run. Used when `level` is `step`. - full_name (str): Specify the name of the node. Used when `level` is `node`. Returns: EventReply, control event with run command. """ level = params.get('level', 'step') event = get_ack_reply() if level == 'step': steps = params.get('steps') if not steps: steps = 1 run_cmd = RunCMD(run_level='step', run_steps=steps) elif level == 'node': self._validate_node_type(params.get('name')) name = self.cache_store.get_stream_handler( Streams.GRAPH).get_full_name(params['name']) if not name: name = '' run_cmd = RunCMD(run_level='node', node_name=name) else: log.error( "Invalid Value. `level` should be `step` or `node`. Got %s", level) raise DebuggerParamValueError("level` should be `step` or `node`") event.run_cmd.CopyFrom(run_cmd) log.debug("Construct run event. %s", event) return event def _send_watchpoints(self): """Set watchpoints.""" watchpoint_stream = self.cache_store.get_stream_handler( Streams.WATCHPOINT) watchpoints = watchpoint_stream.get( filter_condition=True).get('watch_points') if watchpoints: for watchpoint in watchpoints: event = get_ack_reply() event.set_cmd.CopyFrom(watchpoint) self.cache_store.put_command(event) watchpoint_stream.sync_set_cmd() log.debug("Send SetCMD to MindSpore. %s", event) def _pause(self, metadata_stream): """ Pause the training. Args: metadata_stream (MetadataHandler): The metadata stream handler. """ if metadata_stream.state != ServerStatus.RUNNING.value: log.error("The MindSpore is not running.") raise DebuggerPauseError("The MindSpore is not running.") metadata_stream.state = 'waiting' event = get_ack_reply() event.run_cmd.CopyFrom(RunCMD(run_level='step', run_steps=0)) self.cache_store.put_command(event) log.debug("Send the Pause command") return {'metadata': {'state': 'waiting'}} def _terminate(self, metadata_stream): """ Terminate the training. Args: metadata_stream (MetadataHandler): The metadata stream handler. """ metadata_stream.state = 'pending' event = get_ack_reply() event.exit = True self.cache_store.put_command(event) log.debug("Send the ExitCMD.") return {'metadata': {'state': 'pending'}} def retrieve_node_by_bfs(self, node_name, ascend=False): """ Get the graph of the next node according to node_name. Args: node_name (str): The name of current chosen leaf node. ascend (bool): If True, traverse the input nodes; If False, traverse the output nodes. Default is True. Returns: dict, the next node information. """ log.info("Retrieve node <%s> by bfs, `ascend` is :%s", node_name, ascend) reply = {} graph_stream = self.cache_store.get_stream_handler(Streams.GRAPH) next_node_name = graph_stream.get_node_by_bfs_order(node_name, ascend) # no next node if next_node_name is None: return reply # add graph and tensor history for next node filter_condition = {'name': next_node_name, 'single_node': True} search_graph = self._get_nodes_info(filter_condition) reply = {'name': next_node_name} reply.update(search_graph) return reply