コード例 #1
0
def normalize_summary_dir(summary_dir):
    """Normalize summary dir."""
    try:
        summary_dir = validate_path(summary_dir)
    except (LineageParamValueError, LineageDirNotExistError) as error:
        log.error(str(error))
        log.exception(error)
        raise LineageParamSummaryPathError(str(error.message))
    return summary_dir
コード例 #2
0
def get_dataset_graph():
    """
    Get dataset graph.

    Returns:
        str, the dataset graph information.

    Raises:
        MindInsightException: If method fails to be called.
        ParamValueError: If summary_dir is invalid.

    Examples:
        >>> GET http://xxxx/v1/mindinsight/datasets/dataset_graph?train_id=xxx
    """

    summary_base_dir = str(settings.SUMMARY_BASE_DIR)
    summary_dir = get_train_id(request)
    if summary_dir.startswith('/'):
        validate_path(summary_dir)
    elif summary_dir.startswith('./'):
        summary_dir = os.path.join(summary_base_dir, summary_dir[2:])
        summary_dir = validate_path(summary_dir)
    else:
        raise ParamValueError("Summary dir should be absolute path or "
                              "relative path that relate to summary base dir.")
    try:
        dataset_graph = get_summary_lineage(summary_dir=summary_dir,
                                            keys=['dataset_graph'])
    except MindInsightException as exception:
        raise MindInsightException(exception.error,
                                   exception.message,
                                   http_code=400)

    if dataset_graph:
        summary_dir_result = dataset_graph.get('summary_dir')
        base_dir_len = len(summary_base_dir)
        if summary_base_dir == summary_dir_result:
            relative_dir = './'
        else:
            relative_dir = os.path.join(os.curdir,
                                        summary_dir[base_dir_len + 1:])
        dataset_graph['summary_dir'] = relative_dir

    return jsonify(dataset_graph)
コード例 #3
0
def get_summary_lineage(summary_dir, keys=None):
    """
    Get the lineage information according to summary directory and keys.

    The function queries lineage information of single train process
    corresponding to the given summary directory. Users can query the
    information according to `keys`.

    Args:
        summary_dir (str): The summary directory. It contains summary logs for
            one training.
        keys (list[str]): The filter keys of lineage information. The acceptable
            keys are `metric`, `hyper_parameters`, `algorithm`, `train_dataset`,
            `model`, `valid_dataset` and `dataset_graph`. If it is `None`, all
            information will be returned. Default: None.

    Returns:
        dict, the lineage information for one training.

    Raises:
        LineageParamSummaryPathError: If summary path is invalid.
        LineageQuerySummaryDataError: If querying summary data fails.
        LineageFileNotFoundError: If the summary log file is not found.

    Examples:
        >>> summary_dir = "/path/to/summary"
        >>> summary_lineage_info = get_summary_lineage(summary_dir)
        >>> hyper_parameters = get_summary_lineage(summary_dir, keys=["hyper_parameters"])
    """
    try:
        summary_dir = validate_path(summary_dir)
    except MindInsightException as error:
        log.error(str(error))
        log.exception(error)
        raise LineageParamSummaryPathError(str(error.message))

    if keys is not None:
        validate_filter_key(keys)

    summary_path = SummaryPathParser.get_latest_lineage_summary(summary_dir)
    if summary_path is None:
        log.error('There is no summary log file under summary_dir.')
        raise LineageFileNotFoundError(
            'There is no summary log file under summary_dir.')

    try:
        result = Querier(summary_path).get_summary_lineage(summary_dir,
                                                           filter_keys=keys)
    except LineageSummaryParseException:
        return {}
    except (LineageQuerierParamException, LineageParamTypeError) as error:
        log.error(str(error))
        log.exception(error)
        raise LineageQuerySummaryDataError("Get summary lineage failed.")

    return result[0]
コード例 #4
0
def _convert_relative_path_to_abspath(summary_base_dir, search_condition):
    """
    Convert relative path to absolute path.

    Args:
        summary_base_dir (str): The summary base directory.
        search_condition (dict): The search condition.

    Returns:
        dict, the updated search_condition.

    Raises:
        LineageParamValueError: If the value of input_name is invalid.
    """
    if ("summary_dir" not in search_condition) or (
            not search_condition.get("summary_dir")):
        return search_condition

    summary_dir_condition = search_condition.get("summary_dir")
    if not set(summary_dir_condition.keys()).issubset(['in', 'eq']):
        raise LineageParamValueError("Invalid operation of summary dir.")

    if 'in' in summary_dir_condition:
        summary_paths = []
        for summary_dir in summary_dir_condition.get('in'):
            if summary_dir.startswith('./'):
                abs_dir = os.path.join(summary_base_dir, summary_dir[2:])
                abs_dir = validate_path(abs_dir)
            else:
                abs_dir = validate_path(summary_dir)
            summary_paths.append(abs_dir)
        search_condition.get('summary_dir')['in'] = summary_paths

    if 'eq' in summary_dir_condition:
        summary_dir = summary_dir_condition.get('eq')
        if summary_dir.startswith('./'):
            abs_dir = os.path.join(summary_base_dir, summary_dir[2:])
            abs_dir = validate_path(abs_dir)
        else:
            abs_dir = validate_path(summary_dir)
        search_condition.get('summary_dir')['eq'] = abs_dir

    return search_condition
コード例 #5
0
def filter_summary_lineage(summary_base_dir, search_condition=None):
    """
    Filter the lineage information under summary base directory according to search condition.

    Users can filter and sort all lineage information according to the search
    condition. The supported filter fields include `summary_dir`, `network`,
    etc. The filter conditions include `eq`, `lt`, `gt`, `le`, `ge` and `in`.
    At the same time, the combined use of these fields and conditions is
    supported. If you want to sort based on filter fields, the field of
    `sorted_name` and `sorted_type` should be specified.

    Users can use `lineage_type` to decide what kind of lineage information to
    query. If the `lineage_type` is `dataset`, the query result is only the
    lineage information related to data augmentation. If the `lineage_type` is
    `model` or `None`, the query result is all lineage information.

    Users can paginate query result based on `offset` and `limit`. The `offset`
    refers to page number. The `limit` refers to the number in one page.

    Args:
        summary_base_dir (str): The summary base directory. It contains summary
            directories generated by training.
        search_condition (dict): The search condition. When filtering and
            sorting, in addition to the following supported fields, fields
            prefixed with `metric_` are also supported. The fields prefixed with
            `metric_` are related to the `metrics` parameter in the training
            script. For example, if the key of `metrics` parameter is
            `accuracy`, the field should be `metric_accuracy`. Default: None.

            - summary_dir (dict): The filter condition of summary directory.

            - loss_function (dict): The filter condition of loss function.

            - train_dataset_path (dict): The filter condition of train dataset path.

            - train_dataset_count (dict): The filter condition of train dataset count.

            - test_dataset_path (dict): The filter condition of test dataset path.

            - test_dataset_count (dict): The filter condition of test dataset count.

            - network (dict): The filter condition of network.

            - optimizer (dict): The filter condition of optimizer.

            - learning_rate (dict): The filter condition of learning rate.

            - epoch (dict): The filter condition of epoch.

            - batch_size (dict): The filter condition of batch size.

            - loss (dict): The filter condition of loss.

            - model_size (dict): The filter condition of model size.

            - dataset_mark (dict): The filter condition of dataset mark.

            - offset (int): Page number, the value range is [0, 100000].

            - limit (int): The number in one page, the value range is [1, 100].

            - sorted_name (str): Specify which field to sort by.

            - sorted_type (str): Specify sort order. It can be `ascending` or
              `descending`.

            - lineage_type (str): It decides what kind of lineage information to
              query. It can be `dataset` or `model`. If it is `dataset`,
              the query result is only the lineage information related to data
              augmentation. If it is `model` or `None`, the query result is all
              lineage information.

    Returns:
        dict, all lineage information under summary base directory according to
        search condition.

    Raises:
        LineageSearchConditionParamError: If search_condition param is invalid.
        LineageParamSummaryPathError: If summary path is invalid.
        LineageFileNotFoundError: If the summary log file is not found.
        LineageQuerySummaryDataError: If querying summary log file data fails.

    Examples:
        >>> summary_base_dir = "/path/to/summary_base"
        >>> search_condition = {
        >>>     'summary_dir': {
        >>>         'in': [
        >>>             os.path.join(summary_base_dir, 'summary_1'),
        >>>             os.path.join(summary_base_dir, 'summary_2'),
        >>>             os.path.join(summary_base_dir, 'summary_3')
        >>>         ]
        >>>     },
        >>>     'loss': {
        >>>         'gt': 2.0
        >>>     },
        >>>     'batch_size': {
        >>>         'ge': 128,
        >>>         'le': 256
        >>>     },
        >>>     'metric_accuracy': {
        >>>         'lt': 0.1
        >>>     },
        >>>     'sorted_name': 'summary_dir',
        >>>     'sorted_type': 'descending',
        >>>     'limit': 3,
        >>>     'offset': 0,
        >>>     'lineage_type': 'model'
        >>> }
        >>> summary_lineage = filter_summary_lineage(summary_base_dir)
        >>> summary_lineage_filter = filter_summary_lineage(summary_base_dir, search_condition)
    """
    try:
        summary_base_dir = validate_path(summary_base_dir)
    except (LineageParamValueError, LineageDirNotExistError) as error:
        log.error(str(error))
        log.exception(error)
        raise LineageParamSummaryPathError(str(error.message))

    search_condition = {} if search_condition is None else search_condition

    try:
        validate_condition(search_condition)
        validate_search_model_condition(SearchModelConditionParameter,
                                        search_condition)
    except MindInsightException as error:
        log.error(str(error))
        log.exception(error)
        raise LineageSearchConditionParamError(str(error.message))

    try:
        search_condition = _convert_relative_path_to_abspath(
            summary_base_dir, search_condition)
    except (LineageParamValueError, LineageDirNotExistError) as error:
        log.error(str(error))
        log.exception(error)
        raise LineageParamSummaryPathError(str(error.message))

    summary_path = SummaryPathParser.get_latest_lineage_summaries(
        summary_base_dir)
    if not summary_path:
        log.error('There is no summary log file under summary_base_dir.')
        raise LineageFileNotFoundError(
            'There is no summary log file under summary_base_dir.')

    try:
        result = Querier(summary_path).filter_summary_lineage(
            condition=search_condition)
    except LineageSummaryParseException:
        result = {'object': [], 'count': 0}
    except (LineageQuerierParamException, LineageParamTypeError) as error:
        log.error(str(error))
        log.exception(error)
        raise LineageQuerySummaryDataError("Filter summary lineage failed.")

    return result