def test_pad_md5(): """ Test Pad with md5 check """ logger.info("test_pad_md5") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = c_vision.Decode() pad_op = c_vision.Pad(150) ctrans = [decode_op, pad_op, ] data1 = data1.map(input_columns=["image"], operations=ctrans) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) pytrans = [ py_vision.Decode(), py_vision.Pad(150), py_vision.ToTensor(), ] transform = py_vision.ComposeOp(pytrans) data2 = data2.map(input_columns=["image"], operations=transform()) # Compare with expected md5 from images filename1 = "pad_01_c_result.npz" save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN) filename2 = "pad_01_py_result.npz" save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
def test_pad_grayscale(): """ Tests that the pad works for grayscale images """ def channel_swap(image): """ Py func hack for our pytransforms to work with c transforms """ return (image.transpose(1, 2, 0) * 255).astype(np.uint8) transforms = [ py_vision.Decode(), py_vision.Grayscale(1), py_vision.ToTensor(), (lambda image: channel_swap(image)) ] transform = py_vision.ComposeOp(transforms) data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data1 = data1.map(input_columns=["image"], operations=transform()) # if input is grayscale, the output dimensions should be single channel pad_gray = c_vision.Pad(100, fill_value=(20, 20, 20)) data1 = data1.map(input_columns=["image"], operations=pad_gray) dataset_shape_1 = [] for item1 in data1.create_dict_iterator(): c_image = item1["image"] dataset_shape_1.append(c_image.shape) # Dataset for comparison data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = c_vision.Decode() # we use the same padding logic ctrans = [decode_op, pad_gray] dataset_shape_2 = [] data2 = data2.map(input_columns=["image"], operations=ctrans) for item2 in data2.create_dict_iterator(): c_image = item2["image"] dataset_shape_2.append(c_image.shape) for shape1, shape2 in zip(dataset_shape_1, dataset_shape_2): # validate that the first two dimensions are the same # we have a little inconsistency here because the third dimension is 1 after py_vision.Grayscale assert (shape1[0:1] == shape2[0:1])
def test_pad_op(): """ Test Pad op """ logger.info("test_random_color_jitter_op") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = c_vision.Decode() pad_op = c_vision.Pad((100, 100, 100, 100)) ctrans = [ decode_op, pad_op, ] data1 = data1.map(input_columns=["image"], operations=ctrans) # Second dataset transforms = [ py_vision.Decode(), py_vision.Pad(100), py_vision.ToTensor(), ] transform = py_vision.ComposeOp(transforms) data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=transform()) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): num_iter += 1 c_image = item1["image"] py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) logger.info("shape of c_image: {}".format(c_image.shape)) logger.info("shape of py_image: {}".format(py_image.shape)) logger.info("dtype of c_image: {}".format(c_image.dtype)) logger.info("dtype of py_image: {}".format(py_image.dtype)) diff = c_image - py_image mse = diff_mse(c_image, py_image) logger.info("mse is {}".format(mse)) assert mse < 0.01
def test_pad_exception(): try: data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) pad_op = c_vision.Pad(150) data1 = data1.map(input_columns=["image"], operations=pad_op) for _ in data1.create_dict_iterator(): pass assert False except RuntimeError as e: assert "Pad error: invalid image shape, only support 3 channels image" in str( e)