def _original_format(self, image, chw, normalized, gray3dim): """ Return transformed image with original format. """ if not is_numpy(image): image = np.array(image) if chw: image = hwc_to_chw(image) if normalized: image = image / 255 if gray3dim: image = np.expand_dims(image, 0) return image
def chw_to_hwc(img): """ Transpose the input image; shape (C, H, W) to shape (H, W, C). Args: img (numpy.ndarray): Image to be converted. Returns: img (numpy.ndarray), Converted image. """ if is_numpy(img): return img.transpose(1, 2, 0).copy() raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img)))
def is_chw(img): """ Check if the input image is shape (H, W, C). Args: img (numpy.ndarray): Image to be checked. Returns: Bool, True if input is shape (H, W, C). """ if is_numpy(img): img_shape = np.shape(img) if img_shape[0] == 3 and img_shape[1] > 3 and img_shape[2] > 3: return True return False raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img)))
def is_rgb(img): """ Check if the input image is RGB. Args: img (numpy.ndarray): Image to be checked. Returns: Bool, True if input is RGB. """ if is_numpy(img): img_shape = np.shape(img) if len(np.shape(img)) == 3 and (img_shape[0] == 3 or img_shape[2] == 3): return True return False raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img)))
def is_normalized(img): """ Check if the input image is normalized between 0 to 1. Args: img (numpy.ndarray): Image to be checked. Returns: Bool, True if input is normalized between 0 to 1. """ if is_numpy(img): minimal = np.min(img) maximun = np.max(img) if minimal >= 0 and maximun <= 1: return True return False raise TypeError('img should be Numpy array. Got {}'.format(type(img)))