コード例 #1
0
    def _run_hoc(self, summary, sample_id, sample_input, prob):
        """
        Run HOC search for a sample image, and then save the result to summary.

        Args:
            summary (SummaryRecord): The summary object to store the data.
            sample_id (int): The sample ID.
            sample_input (Union[Tensor, np.ndarray]): Sample image tensor in CHW or NCWH(N=1).
            prob (Union[Tensor, np.ndarray]): List of sample's classification prediction output, HOC will run for
                labels with prediction output strictly larger then HOC searcher's threshold(0.5 by default).
        """
        if isinstance(sample_input, ms.Tensor):
            sample_input = sample_input.asnumpy()
        if len(sample_input.shape) == 3:
            sample_input = np.expand_dims(sample_input, axis=0)
        has_rec = False
        explain = Explain()
        explain.sample_id = sample_id
        str_mask = hoc.auto_str_mask(sample_input)
        compiled_mask = None
        for label_idx, label_prob in enumerate(prob):
            if label_prob > self._hoc_searcher.threshold:
                if compiled_mask is None:
                    compiled_mask = hoc.compile_mask(str_mask, sample_input)
                try:
                    edit_tree, layer_outputs = self._hoc_searcher.search(
                        sample_input, label_idx, compiled_mask)
                except hoc.NoValidResultError:
                    log.warning(
                        f"No Hierarchical Occlusion result was found in sample#{sample_id} "
                        f"label:{self._labels[label_idx]}, skipped.")
                    continue
                has_rec = True
                hoc_rec = explain.hoc.add()
                hoc_rec.label = label_idx
                hoc_rec.mask = str_mask
                layer_count = edit_tree.max_layer + 1
                for layer in range(layer_count):
                    steps = edit_tree.get_layer_or_leaf_steps(layer)
                    layer_output = layer_outputs[layer]
                    hoc_layer = hoc_rec.layer.add()
                    hoc_layer.prob = layer_output
                    for step in steps:
                        hoc_layer.box.extend(list(step.box))
        if has_rec:
            summary.add_value("explainer", "hoc", explain)
            summary.record(1)
            self._manifest['hierarchical_occlusion'] = True
コード例 #2
0
    def _run_hoc(self, summary, sample_id, sample_input, prob):
        """
        Run HOC search for a sample image, and then save the result to summary.

        Args:
            summary (SummaryRecord): The summary object to store the data.
            sample_id (int): The sample ID.
            sample_input (Union[Tensor, np.ndarray]): Sample image tensor in CHW or NCWH(N=1).
            prob (Union[Tensor, np.ndarray]): List of sample's classification prediction output, HOC will run for
                labels with prediction output strictly larger then HOC searcher's threshold(0.5 by default).
        """
        if isinstance(sample_input, ms.Tensor):
            sample_input = sample_input.asnumpy()
        if len(sample_input.shape) == 3:
            sample_input = np.expand_dims(sample_input, axis=0)

        explain = None
        str_mask = hoc.auto_str_mask(sample_input)
        compiled_mask = None

        for label_idx, label_prob in enumerate(prob):
            if label_prob <= self._hoc_searcher.threshold:
                continue
            if compiled_mask is None:
                compiled_mask = hoc.compile_mask(str_mask, sample_input)
            try:
                edit_tree, layer_outputs = self._hoc_searcher.search(
                    sample_input, label_idx, compiled_mask)
            except hoc.NoValidResultError:
                log.warning(
                    f"No Hierarchical Occlusion result was found in sample#{sample_id} "
                    f"label:{self._labels[label_idx]}, skipped.")
                continue

            if explain is None:
                explain = Explain()
                explain.sample_id = sample_id

            self._add_hoc_result_to_explain(label_idx, str_mask, edit_tree,
                                            layer_outputs, explain)

        if explain is not None:
            summary.add_value("explainer", "hoc", explain)
            summary.record(1)
            self._manifest['hierarchical_occlusion'] = True