class ImageClassificationRunner: """ A high-level API for users to generate and store results of the explanation methods and the evaluation methods. Update in 2020.11: Adjust the storage structure and format of the data. Summary files generated by previous version will be deprecated and will not be supported in MindInsight of current version. Args: summary_dir (str): The directory path to save the summary files which store the generated results. data (tuple[Dataset, list[str]]): Tuple of dataset and the corresponding class label list. The dataset should provides [images], [images, labels] or [images, labels, bboxes] as columns. The label list must share the exact same length and order of the network outputs. network (Cell): The network(with logit outputs) to be explained. activation_fn (Cell): The activation layer that transforms logits to prediction probabilities. For single label classification tasks, `nn.Softmax` is usually applied. As for multi-label classification tasks, `nn.Sigmoid` is usually be applied. Users can also pass their own customized `activation_fn` as long as when combining this function with network, the final output is the probability of the input. Examples: >>> from mindspore.explainer import ImageClassificationRunner >>> from mindspore.explainer.explanation import GuidedBackprop, Gradient >>> from mindspore.explainer.benchmark import Faithfulness >>> from mindspore.nn import Softmax >>> from mindspore.train.serialization import load_checkpoint, load_param_into_net >>> >>> # The detail of AlexNet is shown in model_zoo.official.cv.alexnet.src.alexnet.py >>> net = AlexNet(10) >>> # Load the checkpoint >>> param_dict = load_checkpoint("/path/to/checkpoint") >>> load_param_into_net(net, param_dict) >>> >>> # Prepare the dataset for explaining and evaluation. >>> # The detail of create_dataset_cifar10 method is shown in model_zoo.official.cv.alexnet.src.dataset.py >>> >>> dataset = create_dataset_cifar10("/path/to/cifar/dataset", 1) >>> labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] >>> >>> activation_fn = Softmax() >>> gbp = GuidedBackprop(net) >>> gradient = Gradient(net) >>> explainers = [gbp, gradient] >>> faithfulness = Faithfulness(len(labels), activation_fn, "NaiveFaithfulness") >>> benchmarkers = [faithfulness] >>> >>> runner = ImageClassificationRunner("./summary_dir", (dataset, labels), net, activation_fn) >>> runner.register_saliency(explainers=explainers, benchmarkers=benchmarkers) >>> runner.register_uncertainty() >>> runner.register_hierarchical_occlusion() >>> runner.run() """ # datafile directory names _DATAFILE_DIRNAME_PREFIX = "_explain_" _ORIGINAL_IMAGE_DIRNAME = "origin_images" _HEATMAP_DIRNAME = "heatmap" # specfial filenames _MANIFEST_FILENAME = "manifest.json" # max. no. of sample per directory _SAMPLE_PER_DIR = 1000 # seed for fixing the iterating order of the dataset _DATASET_SEED = 58 # printing spacer _SPACER = "{:120}\r" # datafile directory's permission _DIR_MODE = 0o750 # datafile's permission _FILE_MODE = 0o600 def __init__(self, summary_dir, data, network, activation_fn): check_value_type("data", data, tuple) if len(data) != 2: raise ValueError("Argument data is not a tuple with 2 elements") check_value_type("data[0]", data[0], Dataset) check_value_type("data[1]", data[1], list) if not all(isinstance(ele, str) for ele in data[1]): raise ValueError("Argument data[1] is not list of str.") check_value_type("summary_dir", summary_dir, str) check_value_type("network", network, Cell) check_value_type("activation_fn", activation_fn, Cell) self._summary_dir = summary_dir self._dataset = data[0] self._labels = data[1] self._network = network self._explainers = None self._benchmarkers = None self._uncertainty = None self._hoc_searcher = None self._summary_timestamp = None self._sample_index = -1 self._full_network = SequentialCell([self._network, activation_fn]) self._full_network.set_train(False) self._manifest = None self._verify_data_n_settings(check_data_n_network=True, check_environment=True) def register_saliency(self, explainers, benchmarkers=None): """ Register saliency explanation instances. Note: This function can not be invoked more than once on each runner. Args: explainers (list[Attribution]): The explainers to be evaluated, see `mindspore.explainer.explanation`. All explainers' class must be distinct and their network must be the exact same instance of the runner's network. benchmarkers (list[AttributionMetric], optional): The benchmarkers for scoring the explainers, see `mindspore.explainer.benchmark`. All benchmarkers' class must be distinct. Raises: ValueError: Be raised for any data or settings' value problem. TypeError: Be raised for any data or settings' type problem. RuntimeError: Be raised if this function was invoked before. """ check_value_type("explainers", explainers, list) if not all(isinstance(ele, Attribution) for ele in explainers): raise TypeError("Argument explainers is not list of mindspore.explainer.explanation .") if not explainers: raise ValueError("Argument explainers is empty.") if benchmarkers is not None: check_value_type("benchmarkers", benchmarkers, list) if not all(isinstance(ele, AttributionMetric) for ele in benchmarkers): raise TypeError("Argument benchmarkers is not list of mindspore.explainer.benchmark .") if self._explainers is not None: raise RuntimeError("Function register_saliency() was invoked already.") self._explainers = explainers self._benchmarkers = benchmarkers try: self._verify_data_n_settings(check_saliency=True, check_environment=True) except (ValueError, TypeError): self._explainers = None self._benchmarkers = None raise def register_hierarchical_occlusion(self): """ Register hierarchical occlusion instances. Notes: Input images are required to be in 3 channels formats and the length of side short must be equals to or greater than 56 pixels. This function can not be invoked more than once on each runner. Raises: ValueError: Be raised for any data or settings' value problem. RuntimeError: Be raised if the function was called already. """ if self._hoc_searcher is not None: raise RuntimeError("Function register_hierarchical_occlusion() was invoked already.") self._hoc_searcher = hoc.Searcher(self._full_network) try: self._verify_data_n_settings(check_hoc=True, check_environment=True) except ValueError: self._hoc_searcher = None raise def register_uncertainty(self): """ Register uncertainty instance to compute the epistemic uncertainty base on the Bayes' theorem. Notes: Please refer to the documentation of mindspore.nn.probability.toolbox.uncertainty_evaluation for the details. The actual output is standard deviation of the classification predictions and the corresponding 95% confidence intervals. Users have to invoke register_saliency() as well for the uncertainty results are going to be shown on the saliency map page in MindInsight. This function can not be invoked more then once on each runner. Raises: RuntimeError: Be raised if the function was called already. """ if self._uncertainty is not None: raise RuntimeError("Function register_uncertainty() was invoked already.") self._uncertainty = UncertaintyEvaluation(model=self._full_network, train_dataset=None, task_type='classification', num_classes=len(self._labels)) def run(self): """ Run the explain job and save the result as a summary in summary_dir. Note: User should call register_saliency() once before running this function. Raises: ValueError: Be raised for any data or settings' value problem. TypeError: Be raised for any data or settings' type problem. RuntimeError: Be raised for any runtime problem. """ self._verify_data_n_settings(check_all=True) self._manifest = {"saliency_map": False, "benchmark": False, "uncertainty": False, "hierarchical_occlusion": False} with SummaryRecord(self._summary_dir, raise_exception=True) as summary: print("Start running and writing......") begin = time() self._summary_timestamp = self._extract_timestamp(summary.event_file_name) if self._summary_timestamp is None: raise RuntimeError("Cannot extract timestamp from summary filename!" " It should contains a timestamp after 'summary.' .") self._save_metadata(summary) imageid_labels = self._run_inference(summary) sample_count = self._sample_index if self._is_saliency_registered: self._run_saliency(summary, imageid_labels) if not self._manifest["saliency_map"]: raise RuntimeError( f"No saliency map was generated in {sample_count} samples. " f"Please make sure the dataset, labels, activation function and network are properly trained " f"and configured.") if self._is_hoc_registered and not self._manifest["hierarchical_occlusion"]: raise RuntimeError( f"No Hierarchical Occlusion result was found in {sample_count} samples. " f"Please make sure the dataset, labels, activation function and network are properly trained " f"and configured.") self._save_manifest() print("Finish running and writing. Total time elapsed: {:.3f} s".format(time() - begin)) @property def _is_hoc_registered(self): """Check if HOC module is registered.""" return self._hoc_searcher is not None @property def _is_saliency_registered(self): """Check if saliency module is registered.""" return bool(self._explainers) @property def _is_uncertainty_registered(self): """Check if uncertainty module is registered.""" return self._uncertainty is not None def _save_metadata(self, summary): """Save metadata of the explain job to summary.""" print("Start writing metadata......") explain = Explain() explain.metadata.label.extend(self._labels) if self._is_saliency_registered: exp_names = [exp.__class__.__name__ for exp in self._explainers] explain.metadata.explain_method.extend(exp_names) if self._benchmarkers is not None: bench_names = [bench.__class__.__name__ for bench in self._benchmarkers] explain.metadata.benchmark_method.extend(bench_names) summary.add_value("explainer", "metadata", explain) summary.record(1) print("Finish writing metadata.") def _run_inference(self, summary, threshold=0.5): """ Run inference for the dataset and write the inference related data into summary. Args: summary (SummaryRecord): The summary object to store the data. threshold (float): The threshold for prediction. Returns: dict, The map of sample d to the union of its ground truth and predicted labels. """ has_uncertainty_rec = False sample_id_labels = {} self._sample_index = 0 ds.config.set_seed(self._DATASET_SEED) for j, next_element in enumerate(self._dataset): now = time() inputs, labels, _ = self._unpack_next_element(next_element) prob = self._full_network(inputs).asnumpy() if self._uncertainty is not None: prob_var = self._uncertainty.eval_epistemic_uncertainty(inputs) else: prob_var = None for idx, inp in enumerate(inputs): gt_labels = labels[idx] gt_probs = [float(prob[idx][i]) for i in gt_labels] if prob_var is not None: gt_prob_vars = [float(prob_var[idx][i]) for i in gt_labels] gt_itl_lows, gt_itl_his, gt_prob_sds = \ self._calc_beta_intervals(gt_probs, gt_prob_vars) data_np = _convert_image_format(np.expand_dims(inp.asnumpy(), 0), 'NCHW') original_image = _np_to_image(_normalize(data_np), mode='RGB') original_image_path = self._save_original_image(self._sample_index, original_image) predicted_labels = [int(i) for i in (prob[idx] > threshold).nonzero()[0]] predicted_probs = [float(prob[idx][i]) for i in predicted_labels] if prob_var is not None: predicted_prob_vars = [float(prob_var[idx][i]) for i in predicted_labels] predicted_itl_lows, predicted_itl_his, predicted_prob_sds = \ self._calc_beta_intervals(predicted_probs, predicted_prob_vars) union_labs = list(set(gt_labels + predicted_labels)) sample_id_labels[str(self._sample_index)] = union_labs explain = Explain() explain.sample_id = self._sample_index explain.image_path = original_image_path summary.add_value("explainer", "sample", explain) explain = Explain() explain.sample_id = self._sample_index explain.ground_truth_label.extend(gt_labels) explain.inference.ground_truth_prob.extend(gt_probs) explain.inference.predicted_label.extend(predicted_labels) explain.inference.predicted_prob.extend(predicted_probs) if prob_var is not None: explain.inference.ground_truth_prob_sd.extend(gt_prob_sds) explain.inference.ground_truth_prob_itl95_low.extend(gt_itl_lows) explain.inference.ground_truth_prob_itl95_hi.extend(gt_itl_his) explain.inference.predicted_prob_sd.extend(predicted_prob_sds) explain.inference.predicted_prob_itl95_low.extend(predicted_itl_lows) explain.inference.predicted_prob_itl95_hi.extend(predicted_itl_his) has_uncertainty_rec = True summary.add_value("explainer", "inference", explain) summary.record(1) if self._is_hoc_registered: self._run_hoc(summary, self._sample_index, inputs[idx], prob[idx]) self._sample_index += 1 self._spaced_print("Finish running and writing {}-th batch inference data." " Time elapsed: {:.3f} s".format(j, time() - now)) if has_uncertainty_rec: self._manifest["uncertainty"] = True return sample_id_labels def _run_saliency(self, summary, sample_id_labels): """Run the saliency explanations.""" if self._benchmarkers is None or not self._benchmarkers: for exp in self._explainers: start = time() print("Start running and writing explanation data for {}......".format(exp.__class__.__name__)) self._sample_index = 0 ds.config.set_seed(self._DATASET_SEED) for idx, next_element in enumerate(self._dataset): now = time() self._spaced_print("Start running {}-th explanation data for {}......".format( idx, exp.__class__.__name__)) self._run_exp_step(next_element, exp, sample_id_labels, summary) self._spaced_print("Finish writing {}-th explanation data for {}. Time elapsed: " "{:.3f} s".format(idx, exp.__class__.__name__, time() - now)) self._spaced_print( "Finish running and writing explanation data for {}. Time elapsed: {:.3f} s".format( exp.__class__.__name__, time() - start)) else: for exp in self._explainers: explain = Explain() for bench in self._benchmarkers: bench.reset() print(f"Start running and writing explanation and " f"benchmark data for {exp.__class__.__name__}......") self._sample_index = 0 start = time() ds.config.set_seed(self._DATASET_SEED) for idx, next_element in enumerate(self._dataset): now = time() self._spaced_print("Start running {}-th explanation data for {}......".format( idx, exp.__class__.__name__)) saliency_dict_lst = self._run_exp_step(next_element, exp, sample_id_labels, summary) self._spaced_print( "Finish writing {}-th batch explanation data for {}. Time elapsed: {:.3f} s".format( idx, exp.__class__.__name__, time() - now)) for bench in self._benchmarkers: now = time() self._spaced_print( "Start running {}-th batch {} data for {}......".format( idx, bench.__class__.__name__, exp.__class__.__name__)) self._run_exp_benchmark_step(next_element, exp, bench, saliency_dict_lst) self._spaced_print( "Finish running {}-th batch {} data for {}. Time elapsed: {:.3f} s".format( idx, bench.__class__.__name__, exp.__class__.__name__, time() - now)) for bench in self._benchmarkers: benchmark = explain.benchmark.add() benchmark.explain_method = exp.__class__.__name__ benchmark.benchmark_method = bench.__class__.__name__ benchmark.total_score = bench.performance if isinstance(bench, LabelSensitiveMetric): benchmark.label_score.extend(bench.class_performances) self._spaced_print("Finish running and writing explanation and benchmark data for {}. " "Time elapsed: {:.3f} s".format(exp.__class__.__name__, time() - start)) summary.add_value('explainer', 'benchmark', explain) summary.record(1) def _run_hoc(self, summary, sample_id, sample_input, prob): """ Run HOC search for a sample image, and then save the result to summary. Args: summary (SummaryRecord): The summary object to store the data. sample_id (int): The sample ID. sample_input (Union[Tensor, np.ndarray]): Sample image tensor in CHW or NCWH(N=1). prob (Union[Tensor, np.ndarray]): List of sample's classification prediction output, HOC will run for labels with prediction output strictly larger then HOC searcher's threshold(0.5 by default). """ if isinstance(sample_input, ms.Tensor): sample_input = sample_input.asnumpy() if len(sample_input.shape) == 3: sample_input = np.expand_dims(sample_input, axis=0) has_rec = False explain = Explain() explain.sample_id = sample_id str_mask = hoc.auto_str_mask(sample_input) compiled_mask = None for label_idx, label_prob in enumerate(prob): if label_prob > self._hoc_searcher.threshold: if compiled_mask is None: compiled_mask = hoc.compile_mask(str_mask, sample_input) try: edit_tree, layer_outputs = self._hoc_searcher.search(sample_input, label_idx, compiled_mask) except hoc.NoValidResultError: log.warning(f"No Hierarchical Occlusion result was found in sample#{sample_id} " f"label:{self._labels[label_idx]}, skipped.") continue has_rec = True hoc_rec = explain.hoc.add() hoc_rec.label = label_idx hoc_rec.mask = str_mask layer_count = edit_tree.max_layer + 1 for layer in range(layer_count): steps = edit_tree.get_layer_or_leaf_steps(layer) layer_output = layer_outputs[layer] hoc_layer = hoc_rec.layer.add() hoc_layer.prob = layer_output for step in steps: hoc_layer.box.extend(list(step.box)) if has_rec: summary.add_value("explainer", "hoc", explain) summary.record(1) self._manifest['hierarchical_occlusion'] = True def _run_exp_step(self, next_element, explainer, sample_id_labels, summary): """ Run the explanation for each step and write explanation results into summary. Args: next_element (Tuple): Data of one step explainer (_Attribution): An Attribution object to generate saliency maps. sample_id_labels (dict): A dict that maps the sample id and its union labels. summary (SummaryRecord): The summary object to store the data. Returns: list, List of dict that maps label to its corresponding saliency map. """ has_saliency_rec = False inputs, labels, _ = self._unpack_next_element(next_element) sample_index = self._sample_index unions = [] for _ in range(len(labels)): unions_labels = sample_id_labels[str(sample_index)] unions.append(unions_labels) sample_index += 1 batch_unions = self._make_label_batch(unions) saliency_dict_lst = [] if isinstance(explainer, RISE): batch_saliency_full = explainer(inputs, batch_unions) else: batch_saliency_full = [] for i in range(len(batch_unions[0])): batch_saliency = explainer(inputs, batch_unions[:, i]) batch_saliency_full.append(batch_saliency) concat = ms.ops.operations.Concat(1) batch_saliency_full = concat(tuple(batch_saliency_full)) for idx, union in enumerate(unions): saliency_dict = {} explain = Explain() explain.sample_id = self._sample_index for k, lab in enumerate(union): saliency = batch_saliency_full[idx:idx + 1, k:k + 1] saliency_dict[lab] = saliency saliency_np = _normalize(saliency.asnumpy().squeeze()) saliency_image = _np_to_image(saliency_np, mode='L') heatmap_path = self._save_heatmap(explainer.__class__.__name__, lab, self._sample_index, saliency_image) explanation = explain.explanation.add() explanation.explain_method = explainer.__class__.__name__ explanation.heatmap_path = heatmap_path explanation.label = lab has_saliency_rec = True summary.add_value("explainer", "explanation", explain) summary.record(1) self._sample_index += 1 saliency_dict_lst.append(saliency_dict) if has_saliency_rec: self._manifest['saliency_map'] = True return saliency_dict_lst def _run_exp_benchmark_step(self, next_element, explainer, benchmarker, saliency_dict_lst): """Run the explanation and evaluation for each step and write explanation results into summary.""" inputs, labels, _ = self._unpack_next_element(next_element) for idx, inp in enumerate(inputs): inp = _EXPAND_DIMS(inp, 0) if isinstance(benchmarker, LabelAgnosticMetric): res = benchmarker.evaluate(explainer, inp) benchmarker.aggregate(res) else: saliency_dict = saliency_dict_lst[idx] for label, saliency in saliency_dict.items(): if isinstance(benchmarker, Localization): _, _, bboxes = self._unpack_next_element(next_element, True) if label in labels[idx]: res = benchmarker.evaluate(explainer, inp, targets=label, mask=bboxes[idx][label], saliency=saliency) benchmarker.aggregate(res, label) elif isinstance(benchmarker, LabelSensitiveMetric): res = benchmarker.evaluate(explainer, inp, targets=label, saliency=saliency) benchmarker.aggregate(res, label) else: raise TypeError('Benchmarker must be one of LabelSensitiveMetric or LabelAgnosticMetric, but' 'receive {}'.format(type(benchmarker))) self._manifest['benchmark'] = True @staticmethod def _calc_beta_intervals(means, variances, prob=0.95): """Calculate confidence interval of beta distributions.""" if not isinstance(means, np.ndarray): means = np.array(means) if not isinstance(variances, np.ndarray): variances = np.array(variances) with np.errstate(divide='ignore'): coef_a = ((means ** 2) * (1 - means) / variances) - means coef_b = (coef_a * (1 - means)) / means itl_lows, itl_his = beta.interval(prob, coef_a, coef_b) sds = np.sqrt(variances) for i in range(itl_lows.shape[0]): if not np.isfinite(sds[i]) or not np.isfinite(itl_lows[i]) or not np.isfinite(itl_his[i]): itl_lows[i] = means[i] itl_his[i] = means[i] sds[i] = 0 return itl_lows, itl_his, sds def _verify_labels(self): """Verify labels.""" label_set = set() if not self._labels: raise ValueError(f"The label list provided is empty.") for i, label in enumerate(self._labels): if label.strip() == "": raise ValueError(f"Label [{i}] is all whitespaces or empty. Please make sure there is " f"no empty label.") if label in label_set: raise ValueError(f"Duplicated label:{label}! Please make sure all labels are unique.") label_set.add(label) def _verify_ds_sample(self, sample): """Verify a dataset sample.""" if len(sample) not in [1, 2, 3]: raise ValueError("The dataset should provide [images] or [images, labels], [images, labels, bboxes]" " as columns.") if len(sample) == 3: inputs, labels, bboxes = sample if bboxes.shape[-1] != 4: raise ValueError("The third element of dataset should be bounding boxes with shape of " "[batch_size, num_ground_truth, 4].") else: if self._benchmarkers is not None: if any([isinstance(bench, Localization) for bench in self._benchmarkers]): raise ValueError("The dataset must provide bboxes if Localization is to be computed.") if len(sample) == 2: inputs, labels = sample if len(sample) == 1: inputs = sample[0] if len(inputs.shape) > 4 or len(inputs.shape) < 3 or inputs.shape[-3] not in [1, 3, 4]: raise ValueError( "Image shape {} is unrecognizable: the dimension of image can only be CHW or NCHW.".format( inputs.shape)) if len(inputs.shape) == 3: log.warning( "Image shape {} is 3-dimensional. All the data will be automatically unsqueezed at the 0-th" " dimension as batch data.".format(inputs.shape)) if len(sample) > 1: if len(labels.shape) > 2 and (np.array(labels.shape[1:]) > 1).sum() > 1: raise ValueError( "Labels shape {} is unrecognizable: outputs should not have more than two dimensions" " with length greater than 1.".format(labels.shape)) if self._is_hoc_registered: if inputs.shape[-3] != 3: raise ValueError( "Hierarchical occlusion is registered, images must be in 3 channels format, but " "{} channel(s) is(are) encountered.".format(inputs.shape[-3])) short_side = min(inputs.shape[-2:]) if short_side < hoc.AUTO_IMAGE_SHORT_SIDE_MIN: raise ValueError( "Hierarchical occlusion is registered, images' short side must be equals to or greater then " "{}, but {} is encountered.".format(hoc.AUTO_IMAGE_SHORT_SIDE_MIN, short_side)) def _verify_data(self): """Verify dataset and labels.""" self._verify_labels() try: sample = next(self._dataset.create_tuple_iterator()) except StopIteration: raise ValueError("The dataset provided is empty.") self._verify_ds_sample(sample) def _verify_network(self): """Verify the network.""" next_element = next(self._dataset.create_tuple_iterator()) inputs, _, _ = self._unpack_next_element(next_element) prop_test = self._full_network(inputs) check_value_type("output of network in explainer", prop_test, ms.Tensor) if prop_test.shape[1] != len(self._labels): raise ValueError("The dimension of network output does not match the no. of classes. Please " "check labels or the network in the explainer again.") def _verify_saliency(self): """Verify the saliency settings.""" if self._explainers: explainer_classes = [] for explainer in self._explainers: if explainer.__class__ in explainer_classes: raise ValueError(f"Repeated {explainer.__class__.__name__} explainer! " "Please make sure all explainers' class is distinct.") if explainer.network is not self._network: raise ValueError(f"The network of {explainer.__class__.__name__} explainer is different " "instance from network of runner. Please make sure they are the same " "instance.") explainer_classes.append(explainer.__class__) if self._benchmarkers: benchmarker_classes = [] for benchmarker in self._benchmarkers: if benchmarker.__class__ in benchmarker_classes: raise ValueError(f"Repeated {benchmarker.__class__.__name__} benchmarker! " "Please make sure all benchmarkers' class is distinct.") if isinstance(benchmarker, LabelSensitiveMetric) and benchmarker.num_labels != len(self._labels): raise ValueError(f"The num_labels of {benchmarker.__class__.__name__} benchmarker is different " "from no. of labels of runner. Please make them are the same.") benchmarker_classes.append(benchmarker.__class__) def _verify_data_n_settings(self, check_all=False, check_registration=False, check_data_n_network=False, check_saliency=False, check_hoc=False, check_environment=False): """ Verify the validity of dataset and other settings. Args: check_all (bool): Set it True for checking everything. check_registration (bool): Set it True for checking registrations, check if it is enough to invoke run(). check_data_n_network (bool): Set it True for checking data and network. check_saliency (bool): Set it True for checking saliency related settings. check_hoc (bool): Set it True for checking HOC related settings. check_environment (bool): Set it True for checking environment conditions. Raises: ValueError: Be raised for any data or settings' value problem. TypeError: Be raised for any data or settings' type problem. RuntimeError: Be raised for any runtime problem. """ if check_all: check_registration = True check_data_n_network = True check_saliency = True check_hoc = True check_environment = True if check_environment: device_target = context.get_context('device_target') if device_target not in ("Ascend", "GPU"): raise RuntimeError(f"Unsupported device_target: '{device_target}', " f"only 'Ascend' or 'GPU' is supported. " f"Please call context.set_context(device_target='Ascend') or " f"context.set_context(device_target='GPU').") if check_environment or check_saliency: if self._is_saliency_registered: mode = context.get_context('mode') if mode != context.PYNATIVE_MODE: raise RuntimeError("Context mode: GRAPH_MODE is not supported, " "please call context.set_context(mode=context.PYNATIVE_MODE).") if check_registration: if self._is_uncertainty_registered and not self._is_saliency_registered: raise ValueError("Function register_uncertainty() is called but register_saliency() is not.") if not self._is_saliency_registered and not self._is_hoc_registered: raise ValueError("No explanation module was registered, user should at least call register_saliency() " "or register_hierarchical_occlusion() once with proper arguments.") if check_data_n_network or check_saliency or check_hoc: self._verify_data() if check_data_n_network: self._verify_network() if check_saliency: self._verify_saliency() def _transform_data(self, inputs, labels, bboxes, ifbbox): """ Transform the data from one iteration of dataset to a unifying form for the follow-up operations. Args: inputs (Tensor): the image data labels (Tensor): the labels bboxes (Tensor): the boudnding boxes data ifbbox (bool): whether to preprocess bboxes. If True, a dictionary that indicates bounding boxes w.r.t label id will be returned. If False, the returned bboxes is the the parsed bboxes. Returns: inputs (Tensor): the image data, unified to a 4D Tensor. labels (list[list[int]]): the ground truth labels. bboxes (Union[list[dict], None, Tensor]): the bounding boxes """ inputs = ms.Tensor(inputs, ms.float32) if len(inputs.shape) == 3: inputs = _EXPAND_DIMS(inputs, 0) if isinstance(labels, ms.Tensor): labels = ms.Tensor(labels, ms.int32) labels = _EXPAND_DIMS(labels, 0) if isinstance(bboxes, ms.Tensor): bboxes = ms.Tensor(bboxes, ms.int32) bboxes = _EXPAND_DIMS(bboxes, 0) input_len = len(inputs) if bboxes is not None and ifbbox: bboxes = ms.Tensor(bboxes, ms.int32) masks_lst = [] labels = labels.asnumpy().reshape([input_len, -1]) bboxes = bboxes.asnumpy().reshape([input_len, -1, 4]) for idx, label in enumerate(labels): height, width = inputs[idx].shape[-2], inputs[idx].shape[-1] masks = {} for j, label_item in enumerate(label): target = int(label_item) if -1 < target < len(self._labels): if target not in masks: mask = np.zeros((1, 1, height, width)) else: mask = masks[target] x_min, y_min, x_len, y_len = bboxes[idx][j].astype(int) mask[:, :, x_min:x_min + x_len, y_min:y_min + y_len] = 1 masks[target] = mask masks_lst.append(masks) bboxes = masks_lst labels = ms.Tensor(labels, ms.int32) if len(labels.shape) == 1: labels_lst = [[int(i)] for i in labels.asnumpy()] else: labels = labels.asnumpy().reshape([input_len, -1]) labels_lst = [] for item in labels: labels_lst.append(list(set(int(i) for i in item if -1 < int(i) < len(self._labels)))) labels = labels_lst return inputs, labels, bboxes def _unpack_next_element(self, next_element, ifbbox=False): """ Unpack a single iteration of dataset. Args: next_element (Tuple): a single element iterated from dataset object. ifbbox (bool): whether to preprocess bboxes in self._transform_data. Returns: tuple, a unified Tuple contains image_data, labels, and bounding boxes. """ if len(next_element) == 3: inputs, labels, bboxes = next_element elif len(next_element) == 2: inputs, labels = next_element bboxes = None else: inputs = next_element[0] labels = [[] for _ in inputs] bboxes = None inputs, labels, bboxes = self._transform_data(inputs, labels, bboxes, ifbbox) return inputs, labels, bboxes @staticmethod def _make_label_batch(labels): """ Unify a List of List of labels to be a 2D Tensor with shape (b, m), where b = len(labels) and m is the max length of all the rows in labels. Args: labels (List[List]): the union labels of a data batch. Returns: 2D Tensor. """ max_len = max([len(label) for label in labels]) batch_labels = np.zeros((len(labels), max_len)) for idx, _ in enumerate(batch_labels): length = len(labels[idx]) batch_labels[idx, :length] = np.array(labels[idx]) return ms.Tensor(batch_labels, ms.int32) def _save_manifest(self): """Save manifest.json underneath datafile directory.""" if self._manifest is None: raise RuntimeError("Manifest not yet be initialized.") path_tokens = [self._summary_dir, self._DATAFILE_DIRNAME_PREFIX + str(self._summary_timestamp)] abs_dir_path = self._create_subdir(*path_tokens) save_path = os.path.join(abs_dir_path, self._MANIFEST_FILENAME) with open(save_path, 'w') as file: json.dump(self._manifest, file, indent=4) os.chmod(save_path, self._FILE_MODE) def _save_original_image(self, sample_id, image): """Save an image to summary directory.""" id_dirname = self._get_sample_dirname(sample_id) path_tokens = [self._summary_dir, self._DATAFILE_DIRNAME_PREFIX + str(self._summary_timestamp), self._ORIGINAL_IMAGE_DIRNAME, id_dirname] abs_dir_path = self._create_subdir(*path_tokens) filename = f"{sample_id}.jpg" save_path = os.path.join(abs_dir_path, filename) image.save(save_path) os.chmod(save_path, self._FILE_MODE) return os.path.join(*path_tokens[1:], filename) def _save_heatmap(self, explain_method, class_id, sample_id, image): """Save heatmap image to summary directory.""" id_dirname = self._get_sample_dirname(sample_id) path_tokens = [self._summary_dir, self._DATAFILE_DIRNAME_PREFIX + str(self._summary_timestamp), self._HEATMAP_DIRNAME, explain_method, id_dirname] abs_dir_path = self._create_subdir(*path_tokens) filename = f"{sample_id}_{class_id}.jpg" save_path = os.path.join(abs_dir_path, filename) image.save(save_path, optimize=True) os.chmod(save_path, self._FILE_MODE) return os.path.join(*path_tokens[1:], filename) def _create_subdir(self, *args): """Recursively create subdirectories.""" abs_path = None for token in args: if abs_path is None: abs_path = os.path.realpath(token) else: abs_path = os.path.join(abs_path, token) # os.makedirs() don't set intermediate dir permission properly, we mkdir() one by one try: os.mkdir(abs_path, mode=self._DIR_MODE) # In some platform, mode may be ignored in os.mkdir(), we have to chmod() again to make sure os.chmod(abs_path, mode=self._DIR_MODE) except FileExistsError: pass return abs_path @classmethod def _get_sample_dirname(cls, sample_id): """Get the name of parent directory of the image id.""" return str(int(sample_id / cls._SAMPLE_PER_DIR) * cls._SAMPLE_PER_DIR) @staticmethod def _extract_timestamp(filename): """Extract timestamp from summary filename.""" matched = re.search(r"summary\.(\d+)", filename) if matched: return int(matched.group(1)) return None @classmethod def _spaced_print(cls, message): """Spaced message printing.""" # workaround to print logs starting new line in case line width mismatch. print(cls._SPACER.format(message))
mnist_ds = mnist_ds.shuffle( buffer_size=buffer_size) # 10000 as in LeNet train script mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds if __name__ == '__main__': # get trained model network = LeNet5() param_dict = load_checkpoint('checkpoint_lenet.ckpt') load_param_into_net(network, param_dict) # get train and eval dataset ds_train = create_dataset('workspace/mnist/train') ds_eval = create_dataset('workspace/mnist/test') evaluation = UncertaintyEvaluation(model=network, train_dataset=ds_train, task_type='classification', num_classes=10, epochs=1, epi_uncer_model_path=None, ale_uncer_model_path=None, save_model=False) for eval_data in ds_eval.create_dict_iterator(output_numpy=True): eval_data = Tensor(eval_data['image'], mstype.float32) epistemic_uncertainty = evaluation.eval_epistemic_uncertainty( eval_data) aleatoric_uncertainty = evaluation.eval_aleatoric_uncertainty( eval_data)