コード例 #1
0
 def __init__(self, in_channel, x):
     super().__init__()
     #self._save_graphs(save_graph_flag=True, save_graph_path=".")
     self.biasadd = P.BiasAdd()
     self.equal = P.Equal()
     self.addn = P.AddN()
     self.conv = Conv2d(in_channels=in_channel,
                        out_channels=in_channel,
                        kernel_size=1,
                        stride=1,
                        has_bias=False,
                        weight_init='ones',
                        pad_mode='same')
     self.bn = BatchNorm2d(num_features=in_channel)
     self.assignadd = P.AssignAdd()
     self.assign = P.Assign()
     self.relu = ReLU()
     self.mean = P.ReduceMean(keep_dims=False)
     self.bias = Parameter(Tensor(
         np.random.randint(2, size=(3, )).astype((np.float32))),
                           name="bias")
     self.bias2 = Parameter(Tensor(np.ones([3]).astype(np.float32)),
                            name="bias2")
     self.parameterupdate = ParameterUpdate(self.bias)
     self.value = Tensor(np.random.randn(*(3, )), ms.float32)
     self.x = x
コード例 #2
0
 def __init__(self, c, weight, bias, moving_mean, moving_var_init):
     super(Batchnorm_Net, self).__init__()
     self.bn = BatchNorm2d(c,
                           eps=0.00001,
                           momentum=0.1,
                           beta_init=bias,
                           gamma_init=weight,
                           moving_mean_init=moving_mean,
                           moving_var_init=moving_var_init)
コード例 #3
0
 def __init__(self):
     super().__init__()
     self.bn1 = BatchNorm2d(num_features=4,
                            eps=1e-4,
                            momentum=0.9,
                            gamma_init=1,
                            beta_init=0,
                            moving_mean_init=0,
                            moving_var_init=1,
                            data_format="NHWC")
     self.bn2 = BatchNorm2d(num_features=4,
                            eps=1e-4,
                            momentum=0.9,
                            gamma_init=1,
                            beta_init=0,
                            moving_mean_init=0,
                            moving_var_init=1,
                            data_format="NHWC")
     self.add = P.Add()
     self.relu = ReLU()
     self.conv2d1 = Conv2d(in_channels=4,
                           out_channels=4,
                           kernel_size=2,
                           data_format="NHWC")
     self.conv2d2 = Conv2d(in_channels=4,
                           out_channels=4,
                           kernel_size=2,
                           data_format="NHWC")
     self.conv2d3 = Conv2d(in_channels=4,
                           out_channels=4,
                           kernel_size=2,
                           data_format="NHWC")
     self.conv2d4 = Conv2d(in_channels=4,
                           out_channels=4,
                           kernel_size=2,
                           data_format="NHWC")
コード例 #4
0
 def __init__(self, in_channels, out_channels, kernel_size, vocab_size, embedding_size,
              output_channels, target, sparse):
     super().__init__()
     set_seed(5)
     self.relu = ReLU()
     self.conv = Conv2d(in_channels=in_channels, out_channels=out_channels,
                        kernel_size=kernel_size, has_bias=True, weight_init='normal')
     self.batchnorm = BatchNorm2d(num_features=out_channels)
     self.embedding_lookup = EmbeddingLookup(vocab_size=vocab_size,
                                             embedding_size=embedding_size,
                                             param_init='normal', target=target, sparse=sparse)
     self.flatten = Flatten()
     self.cast = op.Cast()
     self.bias = Parameter(Tensor(np.ones([output_channels]).astype(np.float32)), name='bias')
     self.biasadd = op.BiasAdd()
     self.type = mindspore.int32
コード例 #5
0
 def __init__(self, in_channel, out_channel):
     super().__init__()
     self.relu = PReLU(channel=in_channel, w=0.25)
     self.bn = BatchNorm2d(num_features=in_channel)
     self.conv = Conv2d(in_channels=in_channel,
                        out_channels=out_channel,
                        kernel_size=2,
                        stride=1,
                        has_bias=False,
                        weight_init='ones',
                        pad_mode='same')
     self.mean = P.ReduceMean(keep_dims=False)
     self.fc = Dense(in_channels=out_channel,
                     out_channels=out_channel,
                     weight_init='ones',
                     bias_init='zeros',
                     has_bias=True)