def __init__(self, network): super(NetWithLossClass, self).__init__(auto_prefix=False) self.loss = P.CTCLoss(ctc_merge_repeated=True) self.network = network self.ReduceMean_false = P.ReduceMean(keep_dims=False) self.squeeze_op = P.Squeeze(0) self.cast_op = P.Cast()
def __init__(self): super(ctc_loss, self).__init__() self.loss = P.CTCLoss(preprocess_collapse_repeated=False, ctc_merge_repeated=True, ignore_longer_outputs_than_inputs=False) self.mean = P.ReduceMean() self.transpose = P.Transpose() self.reshape = P.Reshape()
def __init__(self, max_sequence_length, max_label_length, batch_size): super(CTCLoss, self).__init__() self.sequence_length = Parameter(Tensor(np.array([max_sequence_length] * batch_size), mstype.int32), name="sequence_length") labels_indices = [] for i in range(batch_size): for j in range(max_label_length): labels_indices.append([i, j]) self.labels_indices = Parameter(Tensor(np.array(labels_indices), mstype.int64), name="labels_indices") self.reshape = P.Reshape() self.ctc_loss = P.CTCLoss(ctc_merge_repeated=True)
def __init__(self): super(Net, self).__init__() self.ctc_loss = P.CTCLoss()
'desc_bprop': [3, 3], 'skip': ['backward']}), ('ApplyRMSProp', { 'block': P.ApplyRMSProp(), 'desc_const': [0.9, 0.0, 1e-10, 0.001], 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]], 'desc_bprop': [3, 3], 'skip': ['backward']}), ('ApplyCenteredRMSProp', { 'block': P.ApplyCenteredRMSProp(), 'desc_const': [0.9, 0.0, 1e-10, 0.001], 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'desc_bprop': [3, 3], 'skip': ['backward']}), ('CTCLoss', { 'block': P.CTCLoss(), 'desc_inputs': [Tensor(np.ones([6, 4, 6]).astype(np.float32)), Tensor(np.array([[0, 1], [1, 0], [2, 3], [3, 2]]).astype(np.int64)), Tensor(np.array([1, 2, 3, 4]).astype(np.int32)), Tensor(np.array([6, 6, 6, 6]).astype(np.int32))], 'desc_bprop': [[4], [6, 4, 6]]}), ('L2Loss_1', { 'block': P.L2Loss(), 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float32)], 'desc_bprop': []}), ('L2Loss_2', { 'block': P.L2Loss(), 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)], 'desc_bprop': []}), ('ResizeBilinear', { 'block': P.ResizeBilinear((5, 5)),
def __init__(self): super(Net, self).__init__() self.loss = P.CTCLoss() self.div = P.RealDiv() self.mean = P.ReduceMean()