コード例 #1
0
    def __init__(self,
                 config,
                 batch_size,
                 num_classes,
                 use_sigmoid_cls,
                 target_means=(.0, .0, .0, .0),
                 target_stds=(1.0, 1.0, 1.0, 1.0)
                 ):
        super(Proposal, self).__init__()
        cfg = config
        self.batch_size = batch_size
        self.num_classes = num_classes
        self.target_means = target_means
        self.target_stds = target_stds
        self.use_sigmoid_cls = config.use_sigmoid_cls

        if self.use_sigmoid_cls:
            self.cls_out_channels = 1
            self.activation = P.Sigmoid()
            self.reshape_shape = (-1, 1)
        else:
            self.cls_out_channels = num_classes
            self.activation = P.Softmax(axis=1)
            self.reshape_shape = (-1, 2)

        if self.cls_out_channels <= 0:
            raise ValueError('num_classes={} is too small'.format(num_classes))

        self.num_pre = cfg.rpn_proposal_nms_pre
        self.min_box_size = cfg.rpn_proposal_min_bbox_size
        self.nms_thr = cfg.rpn_proposal_nms_thr
        self.nms_post = cfg.rpn_proposal_nms_post
        self.nms_across_levels = cfg.rpn_proposal_nms_across_levels
        self.max_num = cfg.rpn_proposal_max_num

        # Op Define
        self.squeeze = P.Squeeze()
        self.reshape = P.Reshape()
        self.cast = P.Cast()

        self.feature_shapes = cfg.feature_shapes

        self.transpose_shape = (1, 2, 0)

        self.decode = BoundingBoxDecode()

        self.nms = P.NMSWithMask(self.nms_thr)
        self.concat_axis0 = P.Concat(axis=0)
        self.concat_axis1 = P.Concat(axis=1)
        self.split = P.Split(axis=1, output_num=5)
        self.min = P.Minimum()
        self.gatherND = P.GatherNd()
        self.slice = P.Slice()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()
        self.tile = P.Tile()
        self.set_train_local(config, training=True)

        self.multi_10 = Tensor(10.0, mstype.float16)
コード例 #2
0
def test_nms_with_mask_edge_case_3():
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    # CASE 3 - x2/x1 and y2/y1 sequence out of place
    nms_op3 = P.NMSWithMask(0.7)
    bbox3 = [[70, 70, 45, 75, 0.6], [30, 33, 43, 29, 0.1]]
    expected_bbox = np.array([[70., 70., 45., 75.], [30., 33., 43., 29.]])
    expected_score = np.array([0.6, 0.1])

    sel_rows, sel_score = runMSRun(nms_op3, bbox3)
    np.testing.assert_almost_equal(sel_rows, expected_bbox)
    np.testing.assert_almost_equal(sel_score, expected_score)
コード例 #3
0
def test_nms_with_mask_edge_case_2():
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    # CASE 2 - 0 value boxes - with valid scores
    nms_op2 = P.NMSWithMask(0.5)
    bbox2 = [[0, 0, 0, 0, 0.6], [0, 0, 0, 0, 0.1]]
    expected_bbox = np.array([[0., 0., 0., 0.], [0., 0., 0., 0.]])
    expected_score = np.array([0.6, 0.1])

    sel_rows, sel_score = runMSRun(nms_op2, bbox2)
    np.testing.assert_almost_equal(sel_rows, expected_bbox)
    np.testing.assert_almost_equal(sel_score, expected_score)
コード例 #4
0
def test_nms_with_mask_edge_case_1():
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    # CASE 1  - FULL OVERLAP BOXES - Every box is duplicated and has a different score
    nms_op1 = P.NMSWithMask(0.3)
    bbox1 = [[12, 4, 33, 17, 0.6], [20, 11, 38, 23, 0.1], [20, 10, 45, 26, 0.9], [15, 17, 35, 38, 0.5],
             [10, 20, 30, 40, 0.4], [35, 35, 89, 90, 0.8], [12, 4, 33, 17, 0.3], [20, 11, 38, 23, 0.2],
             [20, 10, 45, 26, 0.1], [15, 17, 35, 38, 0.8], [10, 20, 30, 40, 0.41], [35, 35, 89, 90, 0.82]]
    expected_bbox = np.array([[20., 10., 45., 26.],
                              [35., 35., 89., 90.],
                              [15., 17., 35., 38.],
                              [12., 4., 33., 17.]])
    expected_score = np.array([0.9, 0.82, 0.8, 0.6])

    sel_rows, sel_score = runMSRun(nms_op1, bbox1)
    np.testing.assert_almost_equal(sel_rows, expected_bbox)
    np.testing.assert_almost_equal(sel_score, expected_score)
コード例 #5
0
def test_nms_with_mask_check_order():
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
    nms_op = P.NMSWithMask(0.5)
    for _ in range(10):
        count = 4000
        box = np.random.randint(1, 100, size=(count, 4))
        box[:, 2] = box[:, 0] + box[:, 2]
        box[:, 3] = box[:, 1] + box[:, 3]
        unsorted_scores = np.random.rand(count, 1)
        bbox = np.hstack((box, unsorted_scores))
        bbox = Tensor(bbox, dtype=mindspore.float32)
        prop, _, _ = nms_op(bbox)
        ms_sorted_scores = (prop.asnumpy()[:, -1])  # select just scores
        np_sorted_scores = (np.sort(unsorted_scores, axis=0)[::-1][:, 0])  # sort manually
        np.testing.assert_array_almost_equal(
            ms_sorted_scores, np_sorted_scores)
コード例 #6
0
def test_nms_with_masl_check_result():
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    test_count = 500
    for x in range(1, test_count + 1):
        count = 20  # size of bbox lists
        nms_op = P.NMSWithMask(x * 0.002)  # will test full range b/w 0 and 1
        box = np.random.randint(1, 100, size=(count, 4))
        box[:, 2] = box[:, 0] + box[:, 2]
        box[:, 3] = box[:, 1] + box[:, 3]
        unsorted_scores = np.random.rand(count, 1)
        sorted_scores = np.sort(unsorted_scores, axis=0)[::-1]
        bbox = np.hstack((box, sorted_scores))
        bbox = Tensor(bbox, dtype=mindspore.float32)
        _, _, mask = nms_op(bbox)
        mask = mask.asnumpy()
        manual_mask = manualNMS(box, x * 0.002)
        np.testing.assert_array_equal(mask, np.array(manual_mask))
コード例 #7
0
    def test_mode_init(self, config):
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes - 1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(
            np.zeros((self.rpn_max_num, 3)).astype(self.dtype))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(
            np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask,
                            self.zeros_mask),
                           axis=1))
        self.nms_pad_mask = Tensor(
            np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask,
                            self.ones_mask, self.zeros_mask),
                           axis=1))

        self.test_score_thresh = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) *
            config.test_score_thr)
        self.test_score_zeros = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) * 0)
        self.test_box_zeros = Tensor(
            np.ones((self.rpn_max_num, 4)).astype(self.dtype) * -1)
        self.test_iou_thr = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(self.dtype) *
            config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num
コード例 #8
0
ファイル: test_ops.py プロジェクト: smartxcat/mindspore
     'block': P.NPUGetFloatStatus(),
     'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
     'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
     'skip': ['backward']}),
 ('NpuClearFloatStatus', {
     'block': P.NPUClearFloatStatus(),
     'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
     'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
     'skip': ['backward']}),
 ('CheckValid', {
     'block': P.CheckValid(),
     'desc_inputs': [[20000, 4], [3]],
     'desc_bprop': [[20000]],
     'skip': ['backward']}),
 ('NMSWithMask', {
     'block': P.NMSWithMask(0.5),
     'desc_inputs': [[128, 5]],
     'desc_bprop': [[128, 5], [128], [128]],
     'skip': ['backward']}),
 ('Abs', {
     'block': P.Abs(),
     'desc_inputs': [[4]],
     'desc_bprop': [[4]]}),
 ('CumSum', {
     'block': P.CumSum(),
     'desc_const': [0],
     'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
     'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
 ('ReduceSum_3', {
     'block': P.ReduceSum(),
     'desc_const': [0],
コード例 #9
0
        'skip': ['backward']}),

    # input is not tensor
    ('Sin0', {
        'block': (P.Sin(), {'exception': TypeError, 'error_keywords': ['Sin']}),
        'desc_inputs': [5.0],
        'skip': ['backward']}),
    # input is Tensor(bool)
    ('Sin1', {
        'block': (P.Sin(), {'exception': TypeError, 'error_keywords': ['Sin']}),
        'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
        'skip': ['backward']}),

    # input is not tensor
    ('NMSWithMask0', {
        'block': (P.NMSWithMask(), {'exception': TypeError, 'error_keywords': ['NMSWithMask']}),
        'desc_inputs': [5.0],
        'skip': ['backward']}),
    # input is not Tensor(float16) or Tensor(float32)
    ('NMSWithMask1', {
        'block': (P.NMSWithMask(), {'exception': TypeError, 'error_keywords': ['NMSWithMask']}),
        'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
        'skip': ['backward']}),
    # dims is not 2
    ('NMSWithMask2', {
        'block': (P.NMSWithMask(), {'exception': ValueError, 'error_keywords': ['NMSWithMask']}),
        'desc_inputs': [Tensor(np.ones([3, 4, 2]).astype(np.float32))],
        'skip': ['backward']}),
    # shape[1] is not 5
    ('NMSWithMask3', {
        'block': (P.NMSWithMask(), {'exception': ValueError, 'error_keywords': ['NMSWithMask']}),
コード例 #10
0
        'desc_inputs': [5.0],
        'skip': ['backward']
    }),
    # input is Tensor(bool)
    ('Sin1', {
        'block': (P.Sin(), {
            'exception': TypeError,
            'error_keywords': ['Sin']
        }),
        'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.bool_))],
        'skip': ['backward']
    }),

    # input is not tensor
    ('NMSWithMask0', {
        'block': (P.NMSWithMask(), {
            'exception': TypeError,
            'error_keywords': ['NMSWithMask']
        }),
        'desc_inputs': [5.0],
        'skip': ['backward']
    }),
    # input is not Tensor(float16) or Tensor(float32)
    ('NMSWithMask1', {
        'block': (P.NMSWithMask(), {
            'exception': TypeError,
            'error_keywords': ['NMSWithMask']
        }),
        'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32))],
        'skip': ['backward']
    }),
コード例 #11
0
    def __init__(self, config):
        super(Mask_Rcnn_Resnet50, self).__init__()
        self.train_batch_size = config.batch_size
        self.num_classes = config.num_classes
        self.anchor_scales = config.anchor_scales
        self.anchor_ratios = config.anchor_ratios
        self.anchor_strides = config.anchor_strides
        self.target_means = tuple(config.rcnn_target_means)
        self.target_stds = tuple(config.rcnn_target_stds)

        # Anchor generator
        anchor_base_sizes = None
        self.anchor_base_sizes = list(
            self.anchor_strides) if anchor_base_sizes is None else anchor_base_sizes

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, self.anchor_scales, self.anchor_ratios))

        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)

        featmap_sizes = config.feature_shapes
        assert len(featmap_sizes) == len(self.anchor_generators)

        self.anchor_list = self.get_anchors(featmap_sizes)

        # Backbone resnet50
        self.backbone = ResNetFea(ResidualBlockUsing,
                                  config.resnet_block,
                                  config.resnet_in_channels,
                                  config.resnet_out_channels,
                                  False)

        # Fpn
        self.fpn_ncek = FeatPyramidNeck(config.fpn_in_channels,
                                        config.fpn_out_channels,
                                        config.fpn_num_outs)

        # Rpn and rpn loss
        self.gt_labels_stage1 = Tensor(np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8))
        self.rpn_with_loss = RPN(config,
                                 self.train_batch_size,
                                 config.rpn_in_channels,
                                 config.rpn_feat_channels,
                                 config.num_anchors,
                                 config.rpn_cls_out_channels)

        # Proposal
        self.proposal_generator = Proposal(config,
                                           self.train_batch_size,
                                           config.activate_num_classes,
                                           config.use_sigmoid_cls)
        self.proposal_generator.set_train_local(config, True)
        self.proposal_generator_test = Proposal(config,
                                                config.test_batch_size,
                                                config.activate_num_classes,
                                                config.use_sigmoid_cls)
        self.proposal_generator_test.set_train_local(config, False)

        # Assign and sampler stage two
        self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(config, self.train_batch_size,
                                                                      config.num_bboxes_stage2, True)
        self.decode = P.BoundingBoxDecode(max_shape=(768, 1280), means=self.target_means, \
                                          stds=self.target_stds)

        # Roi
        self.roi_align = SingleRoIExtractor(config,
                                            config.roi_layer,
                                            config.roi_align_out_channels,
                                            config.roi_align_featmap_strides,
                                            self.train_batch_size,
                                            config.roi_align_finest_scale,
                                            mask=False)
        self.roi_align.set_train_local(config, True)

        self.roi_align_mask = SingleRoIExtractor(config,
                                                 config.roi_layer,
                                                 config.roi_align_out_channels,
                                                 config.roi_align_featmap_strides,
                                                 self.train_batch_size,
                                                 config.roi_align_finest_scale,
                                                 mask=True)
        self.roi_align_mask.set_train_local(config, True)

        self.roi_align_test = SingleRoIExtractor(config,
                                                 config.roi_layer,
                                                 config.roi_align_out_channels,
                                                 config.roi_align_featmap_strides,
                                                 1,
                                                 config.roi_align_finest_scale,
                                                 mask=False)
        self.roi_align_test.set_train_local(config, False)

        self.roi_align_mask_test = SingleRoIExtractor(config,
                                                      config.roi_layer,
                                                      config.roi_align_out_channels,
                                                      config.roi_align_featmap_strides,
                                                      1,
                                                      config.roi_align_finest_scale,
                                                      mask=True)
        self.roi_align_mask_test.set_train_local(config, False)

        # Rcnn
        self.rcnn_cls = RcnnCls(config, self.train_batch_size, self.num_classes)
        self.rcnn_mask = RcnnMask(config, self.train_batch_size, self.num_classes)

        # Op declare
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()

        self.concat = P.Concat(axis=0)
        self.concat_1 = P.Concat(axis=1)
        self.concat_2 = P.Concat(axis=2)
        self.reshape = P.Reshape()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()

        # Test mode
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_fb_mask = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes-1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(np.float16))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(np.concatenate((self.ones_mask, self.zeros_mask,
                                                self.ones_mask, self.zeros_mask), axis=1))
        self.nms_pad_mask = Tensor(np.concatenate((self.ones_mask, self.ones_mask,
                                                   self.ones_mask, self.ones_mask, self.zeros_mask), axis=1))

        self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_score_thr)
        self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * 0)
        self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(np.float16) * -1)
        self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num

        # Improve speed
        self.concat_start = min(self.num_classes - 2, 55)
        self.concat_end = (self.num_classes - 1)

        # Init tensor
        roi_align_index = [np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_neg_stage2, 1)) * i,
                                    dtype=np.float16) for i in range(self.train_batch_size)]

        roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float16) \
                                for i in range(self.test_batch_size)]

        self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index))
        self.roi_align_index_test_tensor = Tensor(np.concatenate(roi_align_index_test))

        roi_align_index_pos = [np.array(np.ones((config.num_expected_pos_stage2, 1)) * i,
                                        dtype=np.float16) for i in range(self.train_batch_size)]
        self.roi_align_index_tensor_pos = Tensor(np.concatenate(roi_align_index_pos))

        self.rcnn_loss_cls_weight = Tensor(np.array(config.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(np.array(config.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_loss_mask_fb_weight = Tensor(np.array(config.rcnn_loss_mask_fb_weight).astype(np.float16))

        self.argmax_with_value = P.ArgMaxWithValue(axis=1)
        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.onehot = P.OneHot()
        self.reducesum = P.ReduceSum()
        self.sigmoid = P.Sigmoid()
        self.expand_dims = P.ExpandDims()
        self.test_mask_fb_zeros = Tensor(np.zeros((self.rpn_max_num, 28, 28)).astype(np.float16))
        self.value = Tensor(1.0, mstype.float16)
コード例 #12
0
    def __init__(self, config):
        super(Deeptext_VGG16, self).__init__()
        self.train_batch_size = config.batch_size
        self.num_classes = config.num_classes
        self.anchor_scales = config.anchor_scales
        self.anchor_ratios = config.anchor_ratios
        self.anchor_strides = config.anchor_strides
        self.target_means = tuple(config.rcnn_target_means)
        self.target_stds = tuple(config.rcnn_target_stds)

        # Anchor generator
        anchor_base_sizes = None
        self.anchor_base_sizes = list(
            self.anchor_strides
        ) if anchor_base_sizes is None else anchor_base_sizes

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, self.anchor_scales,
                                self.anchor_ratios))

        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)

        featmap_sizes = config.feature_shapes
        assert len(featmap_sizes) == len(self.anchor_generators)

        self.anchor_list = self.get_anchors(featmap_sizes)

        # Rpn and rpn loss
        self.gt_labels_stage1 = Tensor(
            np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8))
        self.rpn_with_loss = RPN(config, self.train_batch_size,
                                 config.rpn_in_channels,
                                 config.rpn_feat_channels, config.num_anchors,
                                 config.rpn_cls_out_channels)

        # Proposal
        self.proposal_generator = Proposal(config, self.train_batch_size,
                                           config.activate_num_classes,
                                           config.use_sigmoid_cls)
        self.proposal_generator.set_train_local(config, True)
        self.proposal_generator_test = Proposal(config, config.test_batch_size,
                                                config.activate_num_classes,
                                                config.use_sigmoid_cls)
        self.proposal_generator_test.set_train_local(config, False)

        # Assign and sampler stage two
        self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(
            config, self.train_batch_size, config.num_bboxes_stage2, True)
        self.decode = P.BoundingBoxDecode(max_shape=(576, 960), means=self.target_means, \
                                          stds=self.target_stds)

        # Rcnn
        self.rcnn = Rcnn(
            config, config.rcnn_in_channels * config.roi_layer['out_size'] *
            config.roi_layer['out_size'], self.train_batch_size,
            self.num_classes)

        # Op declare
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()

        self.concat = P.Concat(axis=0)
        self.concat_1 = P.Concat(axis=1)
        self.concat_2 = P.Concat(axis=2)
        self.reshape = P.Reshape()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()

        # Test mode
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes - 1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(
            np.zeros((self.rpn_max_num, 3)).astype(np.float32))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(
            np.concatenate((self.ones_mask, self.zeros_mask, self.ones_mask,
                            self.zeros_mask),
                           axis=1))
        self.nms_pad_mask = Tensor(
            np.concatenate((self.ones_mask, self.ones_mask, self.ones_mask,
                            self.ones_mask, self.zeros_mask),
                           axis=1))

        self.test_score_thresh = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) *
            config.test_score_thr)
        self.test_score_zeros = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) * 0)
        self.test_box_zeros = Tensor(
            np.ones((self.rpn_max_num, 4)).astype(np.float32) * -1)
        self.test_iou_thr = Tensor(
            np.ones((self.rpn_max_num, 1)).astype(np.float32) *
            config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num

        # Improve speed
        self.concat_start = (self.num_classes - 2)
        self.concat_end = (self.num_classes - 1)

        # Init tensor
        self.use_ambigous_sample = config.use_ambigous_sample
        roi_align_index = [
            np.array(np.ones((config.num_expected_pos_stage2 +
                              config.num_expected_neg_stage2, 1)) * i,
                     dtype=np.float32) for i in range(self.train_batch_size)
        ]
        if self.use_ambigous_sample:
            roi_align_index = [
                np.array(np.ones((config.num_expected_pos_stage2 +
                                  config.num_expected_amb_stage2 +
                                  config.num_expected_neg_stage2, 1)) * i,
                         dtype=np.float32)
                for i in range(self.train_batch_size)
            ]

        roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float32) \
                                for i in range(self.test_batch_size)]

        self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index))
        self.roi_align_index_test_tensor = Tensor(
            np.concatenate(roi_align_index_test))

        self.roi_align4 = P.ROIAlign(pooled_width=7,
                                     pooled_height=7,
                                     spatial_scale=0.125)
        self.roi_align5 = P.ROIAlign(pooled_width=7,
                                     pooled_height=7,
                                     spatial_scale=0.0625)

        self.concat1 = P.Concat(axis=1)
        self.roi_align_fuse = _conv(in_channels=1024,
                                    out_channels=512,
                                    kernel_size=1,
                                    padding=0,
                                    stride=1)
        self.vgg16_feature_extractor = VGG16FeatureExtraction()