def __init__(self, num_segments, dyn_a=True, dyn_b=True): super(UnsortedSegmentMinDynNet, self).__init__() self.unsorted_segment_min = P.UnsortedSegmentMin() self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() self.num_segments = num_segments self.to_dyn_1 = dyn_a self.to_dyn_2 = dyn_b
def __init__(self, num_segments): super(UnsortedSegmentMinNet, self).__init__() self.unsorted_segment_min = P.UnsortedSegmentMin() self.num_segments = num_segments
def test_3d_single_init(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') input_x = Tensor(np.arange(4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3), dtype=mindspore.float32) segment_ids = Tensor([3, 0, 1, -1], mstype.int32) net = P.UnsortedSegmentMin() num_segments = 4 output = net(input_x, segment_ids, num_segments).asnumpy() expect = np.array([[[1.5000000e+01, 1.6000000e+01, 1.7000000e+01], [1.8000000e+01, 1.9000000e+01, 2.0000000e+01], [2.1000000e+01, 2.2000000e+01, 2.3000000e+01], [2.4000000e+01, 2.5000000e+01, 2.6000000e+01], [2.7000000e+01, 2.8000000e+01, 2.9000000e+01]], [[3.0000000e+01, 3.1000000e+01, 3.2000000e+01], [3.3000000e+01, 3.4000000e+01, 3.5000000e+01], [3.6000000e+01, 3.7000000e+01, 3.8000000e+01], [3.9000000e+01, 4.0000000e+01, 4.1000000e+01], [4.2000000e+01, 4.3000000e+01, 4.4000000e+01]], [[3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38]], [[0.0000000e+00, 1.0000000e+00, 2.0000000e+00], [3.0000000e+00, 4.0000000e+00, 5.0000000e+00], [6.0000000e+00, 7.0000000e+00, 8.0000000e+00], [9.0000000e+00, 1.0000000e+01, 1.1000000e+01], [1.2000000e+01, 1.3000000e+01, 1.4000000e+01]]]).astype(np.float32) np.testing.assert_array_almost_equal(output, expect) num_segments = 6 output = net(input_x, segment_ids, num_segments).asnumpy() expect = np.array([[[1.5000000e+01, 1.6000000e+01, 1.7000000e+01], [1.8000000e+01, 1.9000000e+01, 2.0000000e+01], [2.1000000e+01, 2.2000000e+01, 2.3000000e+01], [2.4000000e+01, 2.5000000e+01, 2.6000000e+01], [2.7000000e+01, 2.8000000e+01, 2.9000000e+01]], [[3.0000000e+01, 3.1000000e+01, 3.2000000e+01], [3.3000000e+01, 3.4000000e+01, 3.5000000e+01], [3.6000000e+01, 3.7000000e+01, 3.8000000e+01], [3.9000000e+01, 4.0000000e+01, 4.1000000e+01], [4.2000000e+01, 4.3000000e+01, 4.4000000e+01]], [[3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38]], [[0.0000000e+00, 1.0000000e+00, 2.0000000e+00], [3.0000000e+00, 4.0000000e+00, 5.0000000e+00], [6.0000000e+00, 7.0000000e+00, 8.0000000e+00], [9.0000000e+00, 1.0000000e+01, 1.1000000e+01], [1.2000000e+01, 1.3000000e+01, 1.4000000e+01]], [[3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38]], [[3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], [3.4028235e+38, 3.4028235e+38, 3.4028235e+38]]]).astype(np.float32) np.testing.assert_array_almost_equal(output, expect)
def __init__(self, strategy1, strategy2, num_segments): super(Net, self).__init__() self.virtual_dataset = _VirtualDataset() self.merge_op = P.UnsortedSegmentMin().shard((strategy1, strategy2)) self.num_segments = num_segments