コード例 #1
0
ファイル: logmovie.py プロジェクト: waxz/BreezySLAM
def main():

    # Bozo filter for input args
    if len(argv) < 4:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Allocate byte array to receive map updates
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Load the data from the file
    timestamps, lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display, named by dataset
    display = SlamShow(MAP_SIZE_PIXELS,
                       MAP_SIZE_METERS * 1000 / MAP_SIZE_PIXELS, dataset)

    # Pose will be modified in our threaded code
    pose = [0, 0, 0]

    # Launch the data-collection / update thread
    thread = Thread(target=threadfunc,
                    args=(robot, slam, timestamps, lidars,
                          odometries if use_odometry else None, mapbytes,
                          pose))
    thread.daemon = True
    thread.start()

    # Loop forever,displaying current map and pose
    while True:

        # Display map and robot pose
        display.displayMap(mapbytes)
        display.setPose(*pose)

        # Refresh the display, exiting gracefully if user closes it
        if not display.refresh():
            exit(0)
コード例 #2
0
ファイル: SlamIO.py プロジェクト: most-nbperson/Mecanum
    def __init__(self, size_pixels, size_meters):
        self.map_size_pixels = size_pixels
        self.map_size_meters = size_meters
        self.map_scale_meters_per_pixel = float(size_meters) / float(
            size_pixels)
        self.mapbytes = bytearray(self.map_size_pixels * self.map_size_pixels)
        self.robot = None
        self.control = False
        self.lidarShow = True
        self.routine = False
        #slam算法初始化
        self.slam = RMHC_SLAM(MinesLaser(),
                              self.map_size_pixels,
                              self.map_size_meters,
                              map_quality=_DEFAULT_MAP_QUALITY,
                              hole_width_mm=_DEFAULT_HOLE_WIDTH_MM,
                              random_seed=999,
                              sigma_xy_mm=_DEFAULT_SIGMA_XY_MM,
                              sigma_theta_degrees=_DEFAULT_SIGMA_THETA_DEGREES,
                              max_search_iter=_DEFAULT_MAX_SEARCH_ITER)

        self.map_view = OpenMap(self.map_size_pixels, self.map_size_meters)
        self.pose = [0, 0, 0]
コード例 #3
0
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Load the data from the file, ignoring timestamps
    _, lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop over scans
    for scanno in range(nscans):

        if use_odometry:

            # Convert odometry to velocities
            velocities = robot.computePoseChange(odometries[scanno])

            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)

        else:

            # Update SLAM with lidar alone
            slam.update(lidars[scanno])

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (nscans, elapsed_sec, nscans / elapsed_sec))

    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Get final map
    slam.getmap(mapbytes)

    # Pickle the map to a file
    pklname = dataset + '.map'
    print('Writing map to file ' + pklname)
    pickle.dump(mapbytes, open(pklname, 'wb'))
コード例 #4
0
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None
    lidarobj = Laser(360, 12, 360, 8000)

    # Create a CoreSLAM object with laser params and robot object
    slam = RMHC_SLAM(lidarobj, MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Start with an empty trajectory of positions
    trajectory = []
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
    suffix = 1

    while (True):

        if (use_odometry):

            mutex.acquire()

            mainLCMQ = lcmQ
            mainODOQ = odoQ

            # Clear Queues once copied from thread into main for next batch of data
            lcmQ.queue.clear()
            odoQ.queue.clear()

            mutex.release()

            velocities = robot.computePoseChange(mainODOQ.get())
            slam.update(mainLCMQ.get(), velocities)
            x_mm, y_mm, theta_degrees = slam.getpos()

            x_pix = mm2pix(x_mm)
            y_pix = mm2pix(y_mm)

            trajectory.append((y_pix, x_pix))
            slam.getmap(mapbytes)

            trajLen = len(trajectory)

            for i in range(trajLen):
                if (i == (trajLen - 1)):
                    mapbytes[trajectory[i][0] * MAP_SIZE_PIXELS +
                             trajectory[i][1]] = 0
                else:
                    mapbytes[trajectory[i][0] * MAP_SIZE_PIXELS +
                             trajectory[i][1]] = 120

            filename = dataset + str(suffix)
            pgm_save('%s.pgm' % filename, mapbytes,
                     (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
            suffix += 1

            if (keyPressed == 's'):

                #Wrap up last map using leftover data
                pgm_save('%s.pgm' % filename, mapbytes,
                         (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
                '''
                This will take all the maps generated and place them into pgmbagfolder
                For this to work, make sure your destination directory has a folder called pgmbagfolder
                Change the directory:

                /home/Shaurya98/rplidar_workspace/src/mapping/BreezySLAM/examples
                and
                /home/Shaurya98/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder

                With your own destination directory. It it recommended to put pgmbagfolder under the examples
                directory
                '''

                os.chdir(
                    "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder"
                )
                for pgm_file in glob.iglob('*.pgm'):
                    os.remove(pgm_file)
                print("\nEmptied pgmbagfolder")

                os.chdir(
                    "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples"
                )

                for pgm_file in glob.iglob('*.pgm'):
                    shutil.copy2(
                        pgm_file,
                        "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder"
                    )
                    os.remove(pgm_file)

                print("\nFiles recorded and sent to pgmbagfolder")

                #Terminate threads before exiting main()
                thread1.join()
                thread2.join()
                thread3.join()

                break
コード例 #5
0
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> <random_seed>' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Load the data from the file
    lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop over scans
    for scanno in range(nscans):

        if use_odometry:

            # Convert odometry to velocities
            velocities = robot.computeVelocities(odometries[scanno])

            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)

        else:

            # Update SLAM with lidar alone
            slam.update(lidars[scanno])

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (nscans, elapsed_sec, nscans / elapsed_sec))

    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Get final map
    slam.getmap(mapbytes)

    # Put trajectory into map as black pixels
    for coords in trajectory:

        x_mm, y_mm = coords

        x_pix = mm2pix(x_mm)
        y_pix = mm2pix(y_mm)

        mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0

    # Save map and trajectory as PNG file
    image = Image.frombuffer('L', (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS), mapbytes,
                             'raw', 'L', 0, 1)
    image.save('%s.png' % dataset)